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PUBLIC SUMMARY 
This study focused on sensitivity of high-elevation ecosystems in Hawai‘i to climate 

change. These Hawaiian ecosystems are becoming warmer and drier, and are relevant because 

they house many rare species, represent the last remaining stretches of uninvaded landscapes, 

and include wao akua – the small-statured cloud forests of great cultural significance that are the 

‘realm of the gods’. Rapid climate change here presents a disproportionately high climate change 

impact risk. We provided models that relate current, past, and future distribution of plant species 

from 6000 – 7500’ feet in elevation on Haleakalā, to mean climate, extreme drought events, and 

soil properties. We constructed 24 models of current vegetation and found that moisture – both 

overall mean moisture and moisture during an El Niño drought event – was a strong driver of 

vegetation patterns today; whereas temperature and soils were less important. We tested whether 

El Niño frequency was related to changes in vegetation over very long time scales with 

paleorecords of the forest’s upper limit and climate that extend over 3000 years. We found that 

indeed, the upper limit of forest shifted up or down the mountain depending on the frequency of 

El Niño drought events (downslope shift with greater drought frequency) and local moisture 

availability. We analyzed the sensitivity of vegetation to future changes in rainfall – from a 30% 

reduction in rainfall to a 30% gain. We found that vegetation is often more sensitive to reduced 

rainfall than to an equal amount of increased rainfall. With reduced rainfall, vegetation tends to 

move downslope. These data establish the importance of moisture and El Niño to high-elevation 

ecosystems and cast doubt on a common expectation of upslope movement of vegetation with 

warming in Hawai‘i. Downslope movement of vegetation with reduced moisture is an important 

scenario for planning and management. However, the future of El Niño, which is largely 

unknown, may also be important for predicting future vegetation changes. 

 

PROJECT REPORT 

TECHNICAL SUMMARY 

This study’s goal was to focus on ecological responses to climate change at high 

elevations in Hawai‘i. These Hawaiian mauka ecosystems are particularly vulnerable to climate 

change because warming is amplified at high elevations and the trade wind inversion (TWI) is 

changing in ways that enhance aridity. Mean TWI position is highly relevant ecologically 

because abrupt changes in humidity and precipitation at the TWI coincide with an abrupt ecotone 

between cloud forest and subalpine shrublands. Ecosystems around the TWI are relevant because 

they house an incredible array of endemic species, represent some of the last uninvaded 

landscapes, and include culturally significant lands. This project offers current, past, and future 

species and habitat distribution models for vegetation around the TWI. We assessed the 

sensitivity of vegetation around the TWI on Haleakalā to climate change with high-resolution 

habitat and species distribution models (SDMs) driven by soils, mean climate, and climate 

during El Niño-induced drought. For those vegetation models driven by rainfall, we modelled 

future abundance and distribution based on statistically downscaled rainfall projections (Timm et 

al. 2014). We also modelled past forest line dynamics with SDMs built from paleorecords to test 

understandings based on present and future SDMs.  

We constructed 24 baseline (current) distribution models testing the relative importance 

of non- El Niño climate, climate during an El Niño (EN) drought event, and substrate 

characteristics – aspect, percent slope, and substrate age and texture. Moisture was important in 

more than half (16) of all models but temperature was important in less than half (9). We found 

that climate during EN was important in many models (11) and the importance value for relative 
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humidity during EN across all models was not significantly different from that of temperature, 

rainfall, or relative humidity during non-EN climate. Vegetation at and above the TWI was 

driven by EN more often than vegetation below the TWI. The position of the cloud forest’s 

upper limit is one such vegetation model driven by EN. We tested whether forest line dynamics 

were associated with EN in the past with 3300-year long paleorecords of forest line and climate. 

We found that forest line moved upslope with reduced frequency of EN droughts and downslope 

with increased EN frequency. We constructed future models for vegetation characteristics driven 

by rainfall by using PICCC-supported statistical downscaling products for rainfall in Hawai‘i 

(Timm et al. 2014). We found that distribution of cloud forest and the tussock grass 

Deschampsia nubigena moves downslope with decreased rainfall but is less sensitive to 

increased rainfall. Overall, vegetation here is strongly associated with mean climate, especially 

moisture, and climate during El Niño-induced drought. Downslope movement of vegetation with 

reduced moisture, rather than the commonly expected upslope movement with warming, is an 

important scenario for planning and management around the TWI. However, the future of El 

Niño, which is largely unknown, may be more important for predicting future forest line and 

other vegetation changes. These PICCC-funded research accomplishments contribute to 

scientific knowledge and regional climate change adaptation by (1) highlighting the role of 

extreme climatic events (i.e., El Niño) in ecosystem response to climate change and (2) 

integrating past, present, and future distribution models to understand ecosystem sensitivity to 

climate change.  

 

PURPOSE AND OBJECTIVES 

This project addressed issues of vegetation sensitivity at high elevations around the TWI 

in Hawai‘i. Study of climate-change sensitivity here has important implications for both 

conservation and water availability. Hawai‘i’s high-elevation cloud forest is the last remaining 

intact habitat for many endangered forest bird species threatened by non-native avian malaria. As 

temperature increases, malaria will move uphill. Study of forest line ecotone climate-change 

sensitivity has important implications for forest bird conservation planning specifically. Will 

cloud forest move uphill in response to warming, or downhill in response to increased aridity? 

The answer will inform decisions, for example, about whether to restore high-elevation forests 

on Mauna Kea lost to grazing. These high-elevation closed-canopy forests also absorb and store 

vast amounts of rainfall, and thus provide immense supplies of water to downstream users, 

including indigenous and conventional agriculture. This research highlights the potential for 

forest line to change elevation, which has implications for total cloud forest area, and thus total 

watershed yield.  

We began this project with four major objectives: 

1) We will use PICCC-supported downscaling products (“Climate Change Impacts on Critical 

Ecosystems in Hawai‘i and US Pacific Islands Territories” Timm et al.) and a recent study linking 

vegetation patterns to moisture availability to provide species and habitat distribution 

models for future rainfall and temperature surfaces near the TWI on the NE corner of 

Haleakalā volcano. Models will focus on the distribution of cloud forest habitat and the 

abundance of important indicator taxa, such as Metrosideros polymorpha, epiphytes, 

invasive species, and other taxa of management concern. 

2) We will use forthcoming CMIP5 future climate projections and retrospective datasets that 

relate ~3,300 years of vegetation change with fire, onsite drought, ENSO frequency, mean 

latitude of the Intertropical Convergence Zone (ITCZ), and the PDO and the Aleutian Low 
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to develop a second set of distribution models that highlight how vegetation responds to 

longer modes of climate variability and the importance of fire. 

3) We will help convene a workshop – “Holocene paleoclimate in the Hawaiian Islands and its 

large-scale context” – led by Henry Diaz, to bring together leading climatologists and 

paleoclimatologists working in the Pacific Basin. Primary goals of the workshop are to 

evaluate paleoclimatic records, assess causal links between climate patterns in the Pacific, 

highlight needs for further research, and explore areas of collaboration.  

4) We will maintain a climate network, Little HaleNet, that is integrated with permanent 

vegetation plots and the older climate network, HaleNet. 

 

We completed most of these objectives and are nearly complete with others: 

Product Expected Date Actual Date  Status 

Workshop on paleoclimate in Hawai‘i and 

the Pacific 

November 

2011 

November 

7-8, 2011  

Complete 

Current distribution models, publication January 2012 January 

2014  

Complete – 

published in 

Oecologia 

Paleo-distribution models, publication September 

2013 

Estimated 

March 2015 

Manuscript in 

preparation, draft 

shared with PICCC 

Paleoclimate in Hawai‘i and the Pacific, 

technical report  

September 

2013 

Estimated 

January 

2015 

Report in 

preparation 

Future distribution models I, publication April 2014 Estimated 

May 2015 

Preliminary 

analysis complete 

presented in PICCC 

webinar Sept 2014 
Future distribution models II, publication April 2014 NA Too much 

uncertainty in the 

future of ENSO to 

complete this task  

Paleorecords of upper forest response to 

drought and fire, publication 

Additional 

product; not 

initially 

proposed 

November 

2014 

Published in Arctic, 

Antarctic, and 

Alpine Research in 

a special feature on 

tropical alpine 

ecosystems 

Maintenance of Little HaleNet climate 

array 

Ongoing Ongoing Ongoing 

 
There was too much uncertainty in the future of EN to complete “Future distribution models II”, 

where we proposed to use the past distribution model of dynamics in forest line with changes in EN 

frequency to consider the future forest line with future EN scenarios.  We focused instead on gathering 

more data from paleorecords. We published analysis on the response of upper cloud forest to drought and 
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fire over the past 7000 years in a special feature on tropical alpine ecosystems in Arctic, Antarctic, and 

Alpine Research. 

 

ORGANIZATION AND APPROACH 

Baseline distribution models  
Response variables 

Vegetation structure and composition were quantified in 136 plots which comprise 15-m 

long transects that were established along nine elevational transects with a stratified random 

approach (Crausbay and Hotchkiss 2010). The point-intercept method (Levy and Madden 1933) 

was used to quantify species presence every 25 cm along each data transect, in five height 

classes (0–1 m, 1–2 m, 2–3 m, 3–5 m, and > 5 m). All vascular plants were identified to the 

species or variety level, but bryophytes and lichens were not differentiated further. Forest line 

position was defined by the sharp discontinuity where the > 5 m height class dropped from > 

60% cover to < 25% cover in successive plots (Crausbay and Hotchkiss 2010). The > 5 m height 

class was chosen because trees near the forest line on Haleakalā are 5 to 8 m tall (Kitayama and 

Mueller-Dombois 1992).  

Baseline distribution models include 24 different vegetation response variables, including 

species abundance, forest line position (binary), the abundance of the > 5m height class, and 

community metrics based on ordination (Table 1). We used the primary axis from a non-metric 

multi-dimensional scaling (NMS) ordination with a Sørensen distance matrix 2w/(a + b), where a 

and b are the numbers of species in each of two samples and w is the number of species common 

to both samples. The ordination was performed in PC–ORD™ 6.0 (MjM Software Designs, 

Gleneden Beach, OR, USA). 

 

Predictor variables 

Microclimate data were obtained from 15 stations – three within the HaleNet climate 

network and all 12 of the Little HaleNet (LHN) climate network. LHN uses HOBO® Micro 

Station Data Loggers (H21-002, Onset Computer Corporation, Massachusetts, USA) to record 

temperature at 0.02°C resolution and ± 0.21°C accuracy and relative humidity at 0.01% 

resolution and  ± 2.5% accuracy (S-THB-M002, since 2008), and rainfall with a stainless steel 

tipping bucket at 0.2-mm resolution and ± 1% accuracy (RG2-M, since 2005). The remaining 

three stations from the HaleNet network measure, among other variables, temperature (±0.4 °C 

accuracy) and relative humidity (± 2.5% accuracy) with a Vaisala (Helsinki, Finland) HMP45C 

probe and rainfall with a Texas Electronics (Dallas, TX, USA) model TE525 tipping-bucket rain 

gage at 0.254-mm resolution. 

 Hourly data for rainfall (mm), relative humidity (%), and temperature (°C) were 

aggregated into monthly values for August 2005 – July 2010. Seasonal – December-February 

(DJF), March-May (MAM), June-August (JJA), and September-November (SON) – and annual 

means (sums in the case of rainfall) were calculated from the monthly data. In addition, average 

number of consecutive rainless days and total number of rainless days for each station were 

calculated. Total number of rainless days was expressed as a per-year value (normalizing by the 

number of days of observation out of 365 days). Freezing air temperatures are rare near the forest 

line (Kitayama and Mueller-Dombois 1992) and since 2005 the lowest temperature recorded 

there was 0.7°C. Frost damage in leaves of the primary canopy tree, Metrosideros polymorpha, 

occurs at -8.5°C or lower (Melcher et al. 2000). Therefore, the influence of freezing temperatures 

on the forest line position was not considered further. 
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High-resolution (5 m) gridded climate surfaces were generated from the 15 climate 

stations’ data with ordinary kriging using the Geostatistical Analyst extension in ArcGIS™ 10 

(ESRI, Redlands, CA, USA). Kriging takes advantage of the spatial correlation between stations 

and is widely used for interpolating climate variables. Kriging can incorporate secondary 

variables, but in Hawai‘i, the use of a secondary variable does not improve the interpolation for 

rainfall (Frazier 2012). Ordinary kriging has been shown to outperform Thiessen polygons, 

inverse distance weighting, linear regression, ordinary co-kriging, kriging with external drift, and 

simple kriging with varying local means (Mair and Fares 2011; Frazier 2012). Ordinary kriging’s 

better performance is related to the complex mechanisms affecting climate in Hawai‘i that make 

it difficult for one covariate to improve the prediction. In fact, some covariates such as elevation 

are particularly inappropriate at high elevations in Hawai‘i because of the TWI, a shifting 

temperature inversion. In addition, station density in this study (3.5 stations km
-2

) is much 

greater than in previous studies that have tested interpolation methods for rainfall in Hawai‘i 

(range of rain gauge densities = 0.125 – 0.23 stations km
-2

; Mair and Fares 2011; Frazier 2012), 

reducing the need for secondary variables. To reduce bias in this analysis that could be 

introduced by using multiple interpolation methods for the different variables, a single method 

(ordinary kriging) was used to interpolate all variables (e.g., Letten et al. 2013).  

Microclimate predictor variables were extracted from the gridded surfaces at each of the 

136 vegetation plots and include three groups – air temperature, relative humidity, and rainfall – 

from (i) non-El Niño periods and (ii) a strong El Niño winter. There were no strong La Niña 

winters during this study period. For non-El Niño periods, each group of predictor variables 

includes annual and seasonal data 2005-2010 for rainfall and 2008-2010 for relative humidity 

and temperature. We defined a strong El Niño event when the mean for the Multivariate ENSO 

Index (MEI, Wolter and Timlin 2011) ranks for any three-month season fell within the 10th 

percentile. The MEI is defined by multivariate characteristics and allows for spatial variations 

and historical definitions of ENSO in the instrumental record, unlike other ENSO indices (e.g., 

Niño3.4; Wolter and Timlin 2011). Microclimatic data during seasons that the MEI ranks 

classified as neutral, weak El Niño, and weak La Niña, based on the 10th percentile definition for 

strong events, are all considered non-El Niño periods in this study, as weak El Niños or La Niñas 

are not associated with strong climate anomalies in Hawai‘i (da Silva 2012). Climate variables 

during these non-El Niño periods were highly correlated with each other within a particular 

group (e.g., rainfall). The mean Pearson’s r between all pairwise total rainfall variables = 0.96, 

mean relative humidity variables = 0.95, and mean temperature variables = 0.89.  

To minimize the effects of collinearity in predictor variables and avoid model over-

fitting, only one predictor was selected to represent total rainfall, mean relative humidity, and 

mean temperature during the non-El Niño periods. Selections were made through a screening 

process in a non-parametric multiplicative regression (NPMR) in HyperNiche 2.0 (MjM 

Software Designs, Gleneden Beach, OR, USA). NPMR screens predictors individually by 

seeking the best fit between the response and each predictor, one at a time, with a kernel 

smoothing function. Models were selected based on the best mean goodness of fit after 

incorporating a leave-one-out cross-validation. For quantitative models, fit was evaluated with a 

cross-validation procedure, a cross R2 (xR2). For binary models, fit was evaluated with logB, the 

log10 of likelihood ratio and area under the receiver operating characteristic curve (AUC). The 

microclimate variable with the best fit was used to represent the non-El Niño periods for that 

group (e.g., rainfall).  
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Microclimate characteristics during the strong El Niño winter differ significantly from 

those during non-El Niño periods (Wilcoxon signed rank test; relative humidity P = 0.01, rainfall 

P = 0.008, temperature P = 0.03; Fig. 2). Our 15-station climate network captured the strong El 

Niño during the winter of 2009-2010, which agrees broadly with the five other strong El Niño 

winters measured at the forest line over the past 20 years (Fig. 2). We used total rainfall, mean 

relative humidity, and mean temperature from the 3-month winter season (DJF) 2009-2010 to 

represent a strong El Niño event. In Hawaiʻi, strong El Nino’s tend to impact the entire winter 

season (Chu 1989; Chu and Chen 2005), so we focus on mean or total microclimate 

characteristics during this time period.   

Substrate characteristics were also included as predictor variables.  We measured percent 

slope and plot orientation (aspect) in each vegetation plot. We used a digital geological map 

(Sherrod et al., 2007) to define substrate age and texture for each plot. 

 

NPMR distribution modeling 

Habitat models use 10 predictor variables: total rainfall, mean relative humidity, and 

mean temperature representing non-El Niño periods; total rainfall, mean relative humidity, and 

mean temperature from the strong El Niño winter of 2009-2010; and percent slope, substrate age, 

aspect, and soil texture. We used NPMR to construct models. NPMR searches all possible 

permutations of model possibilities for a full optimization. Estimated response for a particular 

predictor was determined by a local mean model and a weighted Gaussian kernel function, which 

weights points closer to the target more heavily. Over-fitting is constantly controlled in NPMR 

through built-in cross-validation. In addition, we set the improvement criterion at 5%, the 

data:predictor ratio minimum at 5, and the minimum average neighborhood size, N*, at 3% of 

sites, where N* is the average sum of the weights for other data points that bear on the target 

point. Models were selected based on the best cross-validated fit with the lowest number of 

predictor variables after incorporating a leave-one-out cross-validation. Fit was evaluated as 

described above for NPMR’s screening process for microclimate predictor variables (xR2 for 

quantitative models; logB and AUC for the binary forest line model). Model significance was 

determined for the highest evaluated model with P, the results of a 1000-run Monte Carlo 

randomization test.  

We compared the variable importance of mean climate, El Niño climate, and substrate. 

Sensitivity of the model to each predictor was measured by nudging the values up and down by 

5% of the range of individual predictors, and calculating the resulting change in the estimate for 

that point (McCune 2006). Sensitivity measures we report are the mean absolute difference 

resulting from nudging the predictors and are expressed as a proportion of the range of the 

response variable. Sensitivity measures are independent of variable units and higher sensitivities 

represent more important predictor variables. 

We chose NPMR as a preferred algorithm because it allows predictor variables to interact 

– a more realistic approach to ecological modeling (McCune 2006). NPMR is similar to a 

generalized additive model (GAM) with smoothing functions, but it combines predictor variables 

multiplicatively and automatically models interactions with a multiplicative kernel function, 

rather than requiring that interactions among predictors be specified explicitly. NPMR is flexible 

and can model both quantitative and binary response variables. We tested the robustness of 

NPMR results of our binary forest line model, showing that relative humidity during El Niño was 

the strongest driver, with Boosted Regression Trees, Random Forests, Multivariate Adaptive 

Regression Splines, and a Generalized Linear Model. We found that relative humidity during El 
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Niño was also the most important variable in all but Boosted Regression Trees, where it was the 

second most important variable. 

 

Future distribution models  
Response variables 

 We modelled the future of vegetation characteristics that were driven, at least in part, by 

rainfall. These models included the abundance of Deschampsia nubigena, Myrsine lessertiana, 

Bryophytes, vegetation >5m, the forest line position, and overall community composition in the 

cloud forest (axis 1 of a NMS ordination).  

 

Future rainfall scenarios 

 We extracted future rainfall data for each vegetation plot using statistical downscaling 

products based on the CMIP5 Global Model Projections (Elison Timm et al. 2014). This 

downscaling product uses the median from 32 downscaled GCMs and two different 

representative concentration pathways (8.5 and 4.5) to project dry and wet season rainfall. We 

use the mid-century scenarios for RCP 8.5 and RCP 4.5. We also added additional scenarios to 

balance the degree of rainfall change more equally, in order to interpret model results in terms of 

vegetation sensitivity. In our baseline dataset, climate variables during non-El Niño periods – be 

they individual months, dry or wet seasons, or annual means – were highly correlated with each 

other within a particular group (e.g., rainfall). The mean Pearson’s r between all pairwise total 

rainfall variables = 0.96, mean relative humidity variables = 0.95, and mean temperature 

variables = 0.89. As a result, even if a baseline model was driven by wet season rainfall, we 

modelled the future scenarios based on statistical downscaling of both wet and dry season 

rainfall. Our data are meant to be interpreted in terms of vegetation sensitivity, not in terms of a 

precise vegetation future. 

 

Differences in abundance/distribution 

 To determine whether and how future rainfall changes affect abundance, we performed 

paired t-tests, or Wilcoxon Signed Rank tests when our data failed a Shapiro-Wilk normality test, 

on each projected future’s abundance compared to the current (baseline) abundance. To 

determine how rainfall changes affect distribution, we mapped abundances from each future 

rainfall scenario.  

   

Past distribution models 

Response variables 

Vegetation-pollen relationships were analyzed by collecting soil samples, which serve as 

a modern pollen calibration library, from vegetation plots. Recent work calculated several 

metrics from these soil samples’ pollen assemblages and applied the receiver operator 

characteristic (ROC, e.g., Metz 1978) to compare metric performance at distinguishing 

vegetation around the upper forest line (Crausbay & Hotchkiss 2012). This work showed the sum 

of taxa indicative of either subalpine-alpine ecosystems or cloud forest was the most accurate 

predictor of forest line. The percentage of subalpine-alpine indicators was used as the response 

variable to represent forest line position. 

 

Predictor variables 
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Habitat models use 3 predictor variables: El Niño frequency (Moy et al. 2008), onsite 

hydrology (delta-D of leaf waxes) and position of the Intertropical Convergence Zone (Haug et 

al. 2001). We used NPMR to construct distribution models, as above. 

 

Other paleorecords 

Coring & chronology 

We recovered sediment sequences from Flat Top Bog and the two lakes Wai‘ele‘ele and 

Wai‘ānapanapa with a modified Livingstone piston corer. Cores were split longitudinally into 

working and archived halves, photographed, described, and subjected to magnetic susceptibility 

analysis. The working halves of sediment cores were sliced into 0.5-cm intervals. Dating control 

was provided by several Accelerator Mass Spectrometer (AMS) 
14

C measurements on terrestrial 

plant material, including leaves, stems, seeds, wood, and pollen/spore concentrates that were 

obtained with heavy liquid separation (Table 1). Radiocarbon dates were calibrated with 

IntCal09, converted to cal yr Before Present (BP), where “present” is 1950 C.E., and age-depth 

models were constructed using the Bayesian techniques in the P_Sequence algorithm in OxCal 

v4.1.7 software with k = 1 cm (Bronk Ramsey, 2009).  

 

Pollen  

We subsampled 1 cm
3
 of sediment to concentrate pollen/spores using standard techniques 

including acetolysis (Faegri and Iversen, 1989). Pollen/spore residues were mounted in silicone 

oil and all pollen and fern spores were quantified at 400x and sometimes 1000x until we reached 

a sum of 500 pollen grains (excluding any fern spores). Pollen and spore percentages were then 

calculated from raw counts after psilate monolete fern spores and wetland taxa (Poaceae, 

Cyperaceae, Tubuliflorae undifferentiated, Plantago) were excluded from the sum (after 

Crausbay and Hotchkiss, 2012).  

 

Charcoal  

We reconstructed the fire regime with a contiguous record of microscopic charcoal 

fragments. Influx of small fragments of charcoal records the occurrence of past fires and both 

theoretical and empirical studies demonstrate that charcoal > 125 μm provides the best indication 

of local fires (methods reviewed in Whitlock and Larsen, 2002). We quantified charcoal particles 

> 125 μm in contiguous 0.5-cm increments of the sediment core. For each sample, we processed 

1 cm3 of sediment by treating with hot 10% KOH, sieving, transferring material > 125 μm to a 

petri dish, and ‘bleaching’ the sample with 30% H2O2 in a drying oven at 60°C for 24 hours. We 

counted charcoal particles at 60x magnification on a dissecting microscope.  

 

Biomarkers 

We reconstructed the drought regime with the abundance of sedimentary n-alkanes from 

Wai‘ānapanapa, which sits at the modern forest line. Sedimentary n-alkanes were calibrated by 

modern samples across an elevational gradient. The modern samples focused on two types of 

Metrosideros polymorpha leaves – a glabrous variety (var. microphylla) abundant at lower 

elevations in wetter areas and pubescent varieties (var. polymorpha and var. incana) abundant at 

higher elevations in drier areas. The modern leaf sites include (1) four pubescent and three 

glabrous sites taken along an elevational gradient from ~ 100 m to 2400 m a.s.l. on the 

windward, east slope of Mauna Loa volcano on the Island of Hawai‘i (Kahmen et al., 2011), and 

(2) two pubescent sites near the modern TWI on the windward side of the island of Maui at 2040 
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m and 2090 m. Alkanes were analyzed on 27 samples, which included several M.  polymorpha 

leaves from three trees at each of the nine sites. Since leaf wax composition was very similar 

among the replicates (three trees per site), we report only mean site average chain length (ACL) 

of n-alkanes here (standard deviations for the ACL ranged between 0.17 and 0.69, with a mean 

standard deviation of 0.41).  

This modern library of M. polymorpha n-alkanes aids the interpretation of n-alkanes on 

samples from the sediment core. To measure sedimentary n-alkanes, we took 48 subsamples of 5 

cm3 of sediment on average every 11 cm. All alkanes were extracted in the organic geochemical 

laboratory at University of Potsdam, Germany using an accelerated solvent extraction system 

(ASE 350, Dionex Corp, Sunnyvale, USA) to obtain total lipid extracts. Total lipid extracts were 

further separated using silica gel chromatography (solid phase extraction, SPE) into three 

fractions: hydrocarbons (containing the n-alkanes), alcohols and fatty acids. The first fraction 

containing the n-alkanes were analyzed using an Agilent 7890A Gas Chromatograph (GC) with 

an Agilent 5975C mass spectrometric detector (MSD) to identify and with a flame ionization 

detector (FID) (Agilent Technologies, Palo Alto, USA) to quantify biomarkers; the other 

fractions were archived. A more detailed description of the n-alkane extraction procedure and 

GC-MSD/FID measurement is given elsewhere (Garcin et al., 2012). Peak areas of nC25 to 

nC33 alkanes were obtained from the FID detector trace for the calculation of the average chain 

length values.  

 

Data analysis – vegetation dynamics at the upper limit of forest 

To assess overall stability of vegetation, we conducted rate-of-change analysis with the 

Sørensen distance metric, 2w/(a + b), where w is the sum of shared abundances and a and b are 

the sums of abundances in individual sample units, to quantify the dissimilarity between all 

adjacent pollen/spore spectra (McCune and Grace, 2002). We divided the resulting dissimilarity 

index, expressed as percentages where values range from 100% (no species in common) to 0% 

(identical species composition) by the number of years elapsed between samples (e.g., Cole, 

1985; Gavin et al., 2013). This analysis was performed in PAST™ 2.17c (Hammer et al., 2001; 

can be accessed at http:folk.uio.no/ohammer/past). 

To assess variation in vegetation community composition, pollen percentages were 

subjected to nonparametric multidimensional scaling (NMS). Variance explained was distributed 

among the primary axes by calculating the coefficient of determination (r2) between distances in 

the ordination space and distances in the original space. Ordinations were based on a Sørensen 

distance matrix. Correlations between an individual taxon’s abundance and axis scores were 

assessed with a Pearson’s r. All of these analyses were performed in PC–ORD™ 6.0 (MjM 

Software Designs, Gleneden Beach, OR, USA). 

 

Data analysis – fire regime at the upper limit of forest 

We reconstructed local fire events and fire return interval by separating charcoal 

accumulation curves into a low frequency ‘background’ component and a high frequency ‘peak’ 

component. Charcoal concentration was first interpolated to the median sample interval of 2.5 

years and smoothed using LOWESS with a window width of 300 years (Higuera et al., 2009). 

Peaks most likely to represent local fires were identified in CharAnalysis as Cpeak = 

Cinterpolated – Cbackground, with a locally defined threshold level with a 300-year window and 

a Gaussian mixture model that fits two overlapping distributions to the peak frequency 

distribution for the sediment core. Threshold values that identify a peak, and thus a fire event, 
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were determined as a percentage of the noise distribution, with only peaks >99.9% of the noise 

distribution retained for peak analysis and calculation of fire return intervals. Peaks were 

discarded if the minimum charcoal particle count within 75 years of a peak had a >5% chance of 

coming from the same Poisson distribution as the maximum peak sample count. Peaks that 

passed both the threshold and the minimum count test were used to calculate fire return interval. 

We used the program CharAnalysis, written by PE Higuera and freely available at 

https://sites.google.com/site/charanalysis/. We compared charcoal accumulation rates three 

periods of the Wai‘ānapanapa record with contrasting rates of charcoal accumulation with a 

Kruskal-Wallis one way analysis of variance (ANOVA) on ranks and conducted a pairwise 

multiple comparison procedure using Dunn's Method; all performed in SigmaPlot™ version 12.0 

(Systat Software, San Jose, CA). 

 

Data analysis – moisture at the upper limit of forest 

We used peak areas of nC25 to nC33 alkanes for the calculation of the ACL index using 

the following equation: 

ACL=Σn*area(Cn)/Σarea(Cn),  

 

where n is number of carbon atoms of the alkane and area(Cn) the appropriate area of the 

compound with n carbon atoms. 

 We compared the sedimentary paleorecord of ACL to the sediment surface sample, 

interpreted in a context of n-alkane concentration and ACL of modern M. polymorpha leaf 

samples. Drought is defined as a time period when samples frequently showed ACL lower than 

the sediment surface sample, because the site is currently situated at the modern mean TWI on a 

steep moisture gradient. These samples likely originated from a greater abundance of the 

pubescent M. polymorpha variety, suggesting drier conditions and a TWI below Wai‘ānapanapa.  

  

Data analysis – vegetation and disturbance at the upper limit of forest 

To show the relationship between disturbance and vegetation in Wai‘ānapanapa, we first 

categorized each pollen sample based on evidence of fire (defined by charcoal), evidence of 

drought (defined by ACL), and evidence of dieback (defined by samples with < 35% tree pollen 

and scores < -1.2 on axis 2, see Results). We quantified whether species composition was 

significantly different in samples associated with a particular type of disturbance (e.g., drought 

vs. no drought, fire vs. no fire, and dieback vs. no dieback), with a multi-response permutation 

procedure (MRPP), a nonparametric method for testing multivariate differences among pre-

defined groups. We used a Sørensen distance measure and a weighting option for each item in 

the group = n(I)/sum(n(I)). MRPP provides a chance-corrected within-group agreement value, A 

= 0 when heterogeneity within groups equals expectation by chance; A > 0 with more 

heterogeneity within groups than expected by chance. We identified the taxa that were correlated 

with a particular disturbance type with Indicator Species Analysis (ISA) based on Dufrêne and 

Legendre’s (1997) method. We also identified species composition groups, independent of 

disturbance type, with hierarchical agglomerative clustering (flexible beta = -0.25 linkage 

method based on a quantitative Sørensen distance matrix, McCune and Grace, 2002) and 

stratigraphically unconstrained pollen assemblage data. To visualize the relationship between 

vegetation and disturbance, we overlaid these independently derived species composition groups 

on the ordination, along with disturbance ellipses. All of these analyses were performed in PC–

ORD™ 6.0. 
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PROJECT RESULTS 

Baseline distribution models 

Across all of our baseline (current) models, we found that a significant portion (67%) of 

vegetation response variables (e.g., abundance of species x, forest line position, etc.) were driven 

by moisture (either rainfall or relative humidity) and only 38% were driven by temperature 

(Table 1). Nearly half (46%) of all baseline models were driven by climate patterns during El 

Niño. El Niño-driven vegetation models were common in alpine and subalpine vegetation 

including (1) three of four forest line models, (2) community composition above forest line, (3) 

alpine grassland invasive species (Hypochaeris radicata and Holcus lanatus), (4) Sadleria 

cyatheoides the subalpine shrubland dominant, and (5) Cheirodendron trigynum, which along 

with ohia, is the only other tree that forms the tree line. The abundance of standing dead litter is 

also modeled with EN, suggesting past mortality events may have been driven by EN-induced 

drought, especially in wet, eastern areas. 

  

 

Table 1. Results of non-parametric multiplicative regression (NPMR) distribution models of 

vegetation around the TWI on windward Haleakala. Forest line models include two types: binary 

=  forest or not forest response variable, and height = percent cover of the > 5m height class. In 

addition, forest line models explore two spatial scales: sub = a subset of 72 plots that equally 

bracket the forest line, and all = the total n = 136 plots. 
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We measured the relative importance of each type of predictor variable across all models 

and found that overall, non-EN climate variables are dominant drivers of vegetation (Fig. 1). We 

also analyzed the relative importance of each predictor variable and found that relative humidity 

during EN and slope are as important in some models as any non-EN climate variable (Fig. 2).  

 

We tested the robustness of our baseline model of forest line (sub_binary, Table 1), 

which was driven by relative humidity during EN and secondarily by rainfall. To do so, we 

compared our modeling technique (non-parametric multiplicative regression (NPMR)) to 

multiple modeling algorithms (boosted regression trees, generalized linear models, multivariate 

adaptive splines, and random forests). In each of these four models, relative humidity during EN 

was used to model forest line. In three of the four, it was the most important variable, as in our 

NPMR model, and in one model it was second in importance to rainfall, similar to our NPMR 

model. This comparison suggests our modeling results with NPMR are robust. 

 Spatial scale of the dataset influenced which predictors were chosen to model vegetation. 

When forest line was modeled with an even design that brackets the forest line with 350’ of 

elevation above and below the ecotone (n = 72), relative humidity during EN is the most 

important variable and rainfall is a secondary predictor. When the forest line is modeled with our 

entire vegetation array (n = 136), from alpine grassland to >350’ in elevation below forest, 

relative humidity during EN was again most important, but temperature was a secondary 

predictor (Table 1; Forest linesub_binary and Forest lineall_binary). 

 

Future distribution models 

For those baseline models driven by 

rainfall, we modeled future distributions based on 

PICCC-supported statistical downscaling products 

(Timm et al. 2014, Fig. 3). We used eight rainfall 

scenarios to provide a balanced test of vegetation 

sensitivity to rainfall changes. Changes in rainfall 

altered the distribution (Fig. 4) and abundance 

(Table 2, Fig. 5) of vegetation. For example, D. 

nubigena showed downslope movement and 

significant increase in abundance with reduced 

rainfall. Forest line position was vulnerable to 

Figure 2. Sensitivity of the model to each 

predictor variable for all 24 distribution 

models, showing all outliers.  

 

 

Figure 1. Sensitivity of the model to each of 

three types of predictor variables for all 24 

distribution models, showing all outliers.  

 

Figure 3. Rainfall anomalies for 8 scenarios 

used in future vegetation modeling. 
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changes in rainfall, particularly decreased rainfall. Forest line moved downslope, and forest was 

lost from nearly 30% of plots with a 10% reduction in rainfall, whereas forest line moved 

upslope and gained only 15% with a 20% increase (Fig. 6).  

  
Figure 4. Distribution and abundance of future vegetation around the TWI on Haleakalā against 

backdrop of mean annual rainfall, from ~ 1700 mm (green) to >8500 mm (blue). 

 

Table 2. Wilcoxon signed ranks tests on paired differences in abundance for each of eight rainfall 

scenarios. Mean abundance is reported and * = P < 0.05, ** = P < 0.005, *** = P < 0.001. 
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Past distribution models 

We found that dynamics in the 

upper limit of cloud forest over the past 

3,300 years were driven by onsite moisture 

variability and the frequency of El Niño. 

The three paleorecords around the TWI 

demonstrate that forest line was dynamic 

over the last three millennia. The cloud 

forest’s upper limit never fell below 

today’s elevation (Fig. 7). However, forest 

line migrated upslope at least three times 

over the past 3,250 cal yr BP (calibrated 

years before present). Forest line was at 

least 200 m higher than the modern limit 

from 3250 to 2380 ±100 cal yr BP, again 

from 1130 to 820 ±100 cal yr BP, and most 

recently from 470 to 330 ±100 cal yr BP. 

Changes in forest line elevation are 

significantly associated (r
2
 = 0.39) with 

onsite moisture availability, and 

secondarily with El Niño frequency and latitudinal position of the ITCZ, which affects tropical 

rainfall (Fig. 8). The sustained period of lowered forest line from ~ 2,300 to ~ 1,100 cal yr BP 

occurred during the highest El Niño event-frequency, a time without fire and before Polynesian 

arrival. Fires did occur above the forest line at least three times in the past – at 100, 320, and 480 

Figure 6. Percent change of forested plots around the 

forest line with future rainfall scenarios, based on two 

different forest line models. 

Figure 5. Abundance of 

vegetation with future 

rainfall. Significant difference 

from baseline denoted with *.  

Figure 7. Probability that a fossil pollen sample 

was derived from a cloud forest or a subalpine-

alpine ecosystem for three paleorecords 

bracketing the TWI on Haleakalā. 
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years BP. Small fires may have occurred three additional times before those time periods – at 

540, 640, and 740 years BP. Whether fires were the result of volcanoes, drought, human land 

use, or some combination of the three, is difficult to determine from these records. However, 

evidence for the strong role of El Niño in driving the position of the cloud forest’s upper limit – 

especially with the absence of fire and human impacts – suggests that changes in El Niño or 

other drivers of moisture availability can control Hawaiian ecosystem dynamics on millennial 

time scales. These paleoecological data confirm the importance of El Niño to the position of the 

cloud forest’s upper limit, which was suggested by 

species distribution models of today’s forest line 

position (Crausbay et al., 2014, Oecologia). 

 

Other paleorecords 

 We found that the majority of vegetation 

dynamics over the past 7000 years can be explained 

by alteration of disturbance regimes (Crausbay et 

al., 2014, AAAR). The disturbance regime changed 

at least twice in the paleorecord – first during a time 

of maximum El Niño frequency around 2300 cal yr 

BP and again around 500 cal yr BP when a novel 

fire regime appeared. ACL values show evidence of 

increased aridity at the onset of both changes in 

disturbance regimes. These changes were associated 

with rapid ecological change, evidence for dieback 

of cloud forest tree taxa, and short-lived increase in 

vines and lianas. However, the forest’s response to 

drought 

differed 

from the 

response to 

fire, in 

terms of 

species 

compositio

n. Though 

this cloud 

forest was 

dynamic and experienced many disturbances, including 

dieback events, it has recovered in the past, suggesting 

a resilient forest when considered over long time scales. 

  

KEY FINDINGS 

Major discoveries 

 Moisture is a strong driver of vegetation around 

the TWI 

 

 Moisture during EN is a strong driver of 

Figure 9. a-b: Changes in vegetation 

community characteristics over past 

7000 years (NMS ordination axes 1 

and 2) in response to drought (c) and 

fire (d).  

Figure 8. Response (top) and predictor 

variables that make up an NPMR 

distribution model of past forest line 

dynamics. NPMR results: xR
2
 = 0.39, 

sensitivity measures: onsite hydrology = 

1.3, EN frequency = 0.30, ITCZ = 0.28. 
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vegetation, particularly above the TWI 

 

 Moisture and EN frequency has driven forest 

line dynamics over the past 3300 years 

 

 Fire occurred on these landscapes, from 850 

– 250 cal yrs ago 

 

 Upper cloud forest vegetation over 7000 

years changed with drought, fire, and 

dieback, but was resilient overall. 

 

 Vegetation is sensitive to future changes in 

rainfall, particularly reduced rainfall 

 

 Downslope  movement of vegetation near the 

TWI is an important scenario for managers to consider. 

  

Climate-change research is increasingly showing the importance of moisture to 

ecosystems, suggesting the potential for future changes in moisture to alter ecosystems and 

potential downslope movement. Also research is increasingly highlighting the role of extreme 

short-duration climate events, like the EN droughts studied here, in ecosystem dynamics and 

global change response. This work fits in regionally with work at even higher elevations on the 

climate change impacts on silverswords (Kruschelnycky et al. 2012). These studies demand a 

more mechanistic understanding of drought effects on vegetation in Hawai‘i and an exploration 

of the role of carbon starvation, and or cavitation, with moisture stress. Our research also clearly 

highlights a need for greater skill in predicting the future of EN.  

 

Management applications  

Our research shows that vegetation is sensitive to moisture, especially reduced moisture. 

Our future modeling suggests the possibility of downslope movement of forest with reduced 

rainfall. Downslope movement of cloud forest and the tussock grass D. nubigena, coupled with a 

temperature-driven upslope movement in avian malaria is an important scenario for endangered 

forest bird and nene management.  

Our research also shows that vegetation is sensitive to EN, especially at higher elevations 

just above the TWI. This pattern suggests managers may benefit from scenarios of extreme 

drought events causing rapid vegetation change in subalpine and alpine areas. 

Our paleorecords show that fires burned in the subalpine and alpine areas, starting around 

850 years ago, long after Polynesian arrival. Fire occurrence is associated with evidence for 

drought in our paleorecords, however ignition source (human or natural) remains unclear. 

Including a scenario for fire in these high elevation landscapes may be useful to avoid a fire-

related ecological surprise. 
  

CONCLUSIONS AND RECOMMENDATIONS 

Project progression 

 

Figure 10. NMS ordination of fossil 

pollen assemblages over past 7000 

years, identified by three different 

disturbance types (a-c) and major 

species assemblage groups (d).  
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In hindsight, I would have used both dynamical and statistical downscaling for future 

vegetation models, in order to capture future changes in temperature and relative humidity. In 

addition, the future of El Niño is too uncertain to complete future modeling for vegetation types 

driven by EN, especially the forest line, where we could leverage the long time span afforded by 

the paleo-distribution models. Highlighting the role of EN in baseline models leads to many 

more questions. What aspects of EN affect vegetation – frequency or intensity? By what 

mechanism does EN affect vegetation patterns from forest line to species distributions in 

subalpine and alpine ecosystems?  What is the physiological response of these species to strong 

drought?  

 

Recommended next steps 

 The role of EN in vegetation patterns at and above the TWI (forest line, subalpine 

shrubland, alpine grassland) 

 The relationship between EN and the TWI in terms of microclimate 

 Physiological response of different species to drought 

 The paleo-fire regime in ecosystems above the TWI 

 The future of EN frequency and intensity 

 The future of TWI frequency and mean base height 

 

Conservation decisions  

Managers may benefit from (1) anticipating downslope movement of the upper forests 

and (2) revisiting management decisions based on the assumption of upslope movement of 

forest. 
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