
Statistical downscaling of rainfall changes
in Hawai‘i based on the CMIP5
global model projections
Oliver Elison Timm1, Thomas W. Giambelluca2, and Henry F. Diaz3

1Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, New York, USA,
2Department of Geography, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA, 3NOAA/ESRL Cooperative Institute for
Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA

Abstract Seasonal mean rainfall projections for Hawai‘i are given based on statistical downscaling of
the latest Coupled Model Intercomparison Project phase 5 (CMIP5) global model results for two future
representative concentration pathways (RCP4.5 and RCP8.5). The spatial information content of our
statistical downscaling method is improved over previous efforts through the inclusion of spatially
extensive, high-quality monthly rainfall data set and the use of improved large-scale climate predictor
information. Predictor variables include moisture transport in the middle atmosphere (700 hPa), vertical
temperature gradients, and geopotential height fields of the 1000 and 500 hPa layers. The results allow for
the first time to derive a spatially interpolated map with future rainfall change estimates for the main
Hawaiian Islands. The statistical downscaling was applied to project wet (November–April) and dry
(May–October) season rainfall anomalies for the middle and late 21st century. Overall, the statistical
downscaling gives more reliable results for the wet season than for the dry season. The wet-season
results indicate a pronounced dipole structure between windward facing mountain slopes and the
leeward side of most of the islands. The climatically wet regions on the windward slopes of the
mountain regions are expected to become wetter or remain stable in their seasonal precipitation
amounts. On the climatically dry leeward sides of Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, future
precipitation exhibits the strongest drying trends. The projected future rainfall anomaly pattern is
associated with a circulation anomaly that resembles a shift in the position or strength of the subtropical high
and the average location of extratropical troughs. These new results suggest that a negative trend dominates
the area-averaged changes in the statistical downscaling over the Hawaiian Islands. However, the islands are
expected to experience a greater contrast between the wet and dry regions in the future.

1. Introduction

In the last few decades, wet-season (November through April) rainfall for the Hawaiian Islands has exhibited a
drying trend in excess of 10% of the mean [Diaz and Giambelluca, 2012]. Climate projections for business as
usual andmoderate emissions mitigation scenarios derived from the CoupledModel Intercomparison Project
phase 3 (CMIP3) and phase 5 (CMIP5) suggest a general wet-season drying trend to the end of the 21st
century for Hawai‘i, according to the two most recent Intergovernmental Panel on Climate Change (IPCC)
assessment reports [Intergovernmental Panel on Climate Change (IPCC), 2007, 2013, Annex I Fig. AI74]. Higher
precipitation is projected over the central and eastern tropical Pacific, but the subtropical regions around the
Hawaiian Islands show a negative precipitation change of small amplitude [Power et al., 2012]. These
projected regional rainfall changes represent mostly open-ocean conditions and as such cannot be used as
reliable estimates for changes in the water budget calculations over land.

Nullet and McGranaghan [1988] used the station network of rain gauge stations in Hawai‘i to show that a
rainfall enhancement factor of 3.4 is likely to describe the net effects orographic effects on the rainfall budget.
This statewide perspective is integrated over spatial rainfall gradients that range between 250mm and more
than 11,000mm annual total rainfalls within horizontal length scales of 10–100 km and vertical scales of the
order of 1–4 km. With the advances in satellite remote sensing of precipitation over oceans it has become
possible to measure the general effects of small islands on the enhancement (or reduction) of precipitation
compared with the open-ocean surroundings [Sobel et al., 2011]. It was found that the dimensions of islands
and their geometry and orographic features lead to different enhancement effects. It is therefore not
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permissible to apply simple bias correction and scaling principles to downscale coarse-resolution
precipitation products of the CMIP models, which exclude orographic and thermal effects of the islands.
The interaction between trade winds and islands drastically changes the cloud and rain formation processes
[Leopold, 1949; Rasmussen et al., 1989; Xie et al., 2001; Yang and Chen, 2003; Lauer et al., 2013]. Past project
campaigns have studied island weather and airflow interactions by means of field observations and
theoretical numerical models. These projects target the meteorological aspects of specific rain and cloud
formation processes and are insightful for understanding rain formation processes on synoptic time scales
[e.g., Lavoie, 1967; Takahashi, 1977; Rasmussen et al., 1989; Smolarkiewicz et al., 1988; Chen and Nash, 1994;
Kodama and Barnes, 1997; Zhang et al., 2005; Yang and Chen, 2008; Hartley and Chen, 2010].

Despite the complexity of the processes involved, linearized approaches to the full three-dimensional
numerical simulations of orographic precipitation [Smolarkiewicz et al., 1988; Smith and Barstad, 2004;
Kirshbaum and Smith, 2009] have been applied to the problem of understanding general features of tropical
island precipitation. According to these theoretical concepts, the horizontal and vertical length scales
together with the flow characteristics such as mean wind speed and stratification play a dominant role for the
formation and spatial distribution of orographically forced rainfall. Future rainfall changes in Hawai‘i can
therefore be considered from two perspectives: one that would attempt to understand the changes in flow
dynamics (mechanically and thermodynamically forced precipitation) or one that would pursue a statistical
climate diagnostics that combines the large-scale circulation pattern with rainfall statistics in Hawai‘i [e.g.,
Timm and Diaz, 2009]. The latter approach is applied in this study.

Refinements of the global climate model outputs toward spatial resolutions relevant to resource managers
and policymakers have been done with statistical and dynamical downscaling methods. For example, the
recent efforts from the North American Regional Climate Change Assessment Program [Mearns et al., 2009]
and the NASA Earth Exchange [Thrasher et al., 2013] have produced downscaled climate projections for the
continental U.S. Remote locations like the Hawaiian Islands have not been included in such concerted efforts
to obtain a detailed view on the regional pattern of climate change, and much of the current information
is more or less a direct output from the coarse-resolution CMIP5 models. For example, Wuebbles et al. [2014]
present projected changes in the mean rainfall for the state of Hawaii. Given the very different rainfall
climatologies between leeward and windward sides of the islands [Giambelluca et al., 2013] (see also Figure S1
in the supporting information) and their different physical rain formation processes, it is clear that refined
estimates are needed for local environmental impact studies in Hawai‘i [Hobbelen et al., 2012; Judge et al., 2012;
LaPointe et al., 2012; Tanaka et al., 2013].

In previous studies, we explored how the major circulation patterns that affect Hawaiian Islands rainfall
might change and provided estimates of the concomitant changes in seasonal mean rainfall [Timm and Diaz,
2009, hereinafter TD09] and the frequency of heavy rain events [Elison Timm et al., 2011, 2013]. Here we have
updated seasonal mean rainfall projections using the latest CMIP5 model scenarios based on two future
representative concentration pathways (RCP4.5 and RCP8.5). In this study we have improved the spatial
information content of our statistical downscaling (SD) method through the introduction of the Rainfall
Atlas of Hawai‘i station data sets [Giambelluca et al., 2013] and the use of improved large-scale climate
predictor information. Whereas TD09 restricted large-scale circulation information to the meridional surface
winds, in this study we work with a multivariate circulation data set that includes moisture transport in the
middle atmosphere (700 hPa), vertical temperature gradients, and geopotential height fields of the 1000 and
500 hPa layers.

In this paper we briefly review the SD method and the input data in section 2. The results are presented in
section 3. In section 4 we discuss the spatial and seasonal features of the projected rainfall changes and their
uncertainties. We end our paper with a summary of the most robust climate change signals and some
cautionary notes on the further use of projected rainfall changes and their uncertainties in decision-making
processes and environmental impact studies.

2. Methods and Data
2.1. Data

In this study gap-filled monthly rainfall data from the Rainfall Atlas of Hawai‘i [Giambelluca et al., 2013] were
aggregated into wet (November–April) and dry (May–October) season rainfall totals and the annual mean
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time series. In total we used 948 (915 dry season) of the available 1104 stations for the statistical downscaling
calculations (see Figures 1–3). In the original data set, monthly mean rainfall amounts are available for the
years 1920–2007. As explained below, for the statistical downscaling model parameter estimation, we used
the years 1978–2007.

For the large-scale climate diagnostics, monthly mean National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data were used. The monthly mean
data were first aggregated into the Hawaiian wet and dry seasons (November–April and May–October,
respectively). In this study, we used data from the years 1978–2007. Earlier results [Elison Timm et al., 2013]
have shown that changes in the data assimilation—most likely due to incorporation of the satellite remote
sensing data into the data input stream—increase the quality of reanalysis for Hawai‘i and the surrounding
region beginning around the late 1970s compared with the earlier period. For the downscaling model
parameter estimation (hereafter referred to as “calibration”) it is advantageous to work with the large-scale
circulation data with relatively low uncertainties. The end year, 2007, was determined by the rainfall data
limitations at the time of the study. The monthly mean gridded (2.5° × 2.5°) reanalysis data sets for the area
180°E–240°E (Dateline 120°W) and 10°S–40°N were extracted from the global fields and seasonally averaged.

Our choice of domain size and climatic variables used as large-scale predictors in the statistical downscaling
process is based on a number of criteria. First and foremost, the climate variables should have a strong

Figure 1. Statistical downscaling (SD) calibration results obtained with Monte Carlo resampling using 200 realizations
(15 random years from the period 1978–2007) for the wet season. Colored dots show the mean calibration correlation
coefficient (Rcal) between the observed rainfall anomalies and the SD estimates at each station: (a) Kaua‘i; (b) O‘ahu;
(c) Moloka‘i, Lāna‘i, and Maui; (d) Hawai‘i Island. Note that stations with incomplete data coverage in 1978–2007 were
excluded for this Monte Carlo test.
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physical connection to the local rainfall processes. The stability of the atmosphere, moisture content, and
wind directions are found to be the most important factors for rain formation processes on the larger scale.

Table 1 summarizes the circulation variables used in the downscaling process as large-scale predictor
information for station rainfall. Moisture fluxes were calculated from the wind components and specific
humidity on the 700hPa level. Geopotential heights at 500hPa were converted to anomalies with respect to
the areal average in the selected regional domain. This was done to treat the NCEP data and CMIP5 data in the
samemanner. In this way we avoid artifacts resulting from the global increase in the 500hPa level in the future
warming scenarios, which could bias the downscaling results. Note, however, that the vertical temperature
gradient between the 1000 and 500hPa levels was not corrected for the global increase in the vertical stability
(as seen in future climate change scenarios). The domain size has been chosen in our previous studies based on
a compromise between a local (and thus more direct control of rainfall) domain over the islands and a larger
domain that is suitable for the projection of coarser-scale CMIP5 model simulation scenarios.

Future projections of climate change from the CMIP5 database were retrieved from the official Earth System
Grid archives [Taylor et al., 2012]. Two representative concentrations pathways (RCP) are used in this study:
RCP4.5 and RCP8.5, where the number indicates the radiative forcing equivalent (in W/m2) induced by the
anthropogenic forcing by the end of the 21st century. The years 1975–2005 from historical scenario runs from
the CMIP5 models were used to define mean circulation conditions in the models, from which circulation
anomalies were derived for the future model runs. At the time of the research, we were able to work with an
ensemble of 32 models (see Table 2), using a single simulation from each model.

Figure 2. Statistical downscaling (SD) cross-validation results for the wet season. For each Monte Carlo subsample we used
observed rainfall anomalies of years excluded from the model parameter fitting. The means of the correlation coefficients
between observed and SD estimated rainfall anomalies are shown as colored dots for each station.
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2.2. Statistical Downscaling Method

The downscaling method follows the same procedure as described in TD09. Similar statistical downscaling
techniques have been described in the literature [e.g., Wilby et al., 2004; Benestad, 2001; Wang and Zhang,
2008; Maraun et al., 2010; Sobie and Weaver, 2012].
2.2.1. Composite Circulation Pattern
The first steps in developing our statistical downscaling model starts with a classification method that
distinguishes below and above average rainfall seasons at each station. First, for each station the seasonal
rainfall amounts were converted into percentages with respect to the station’s 1978–2007 climatological
mean value and sorted in ascending order. For each station, we take the years of the eight lowest and
eight highest rainfall seasons to form composite maps of the seasonal mean NCEP/NCAR reanalysis data
sets. The composite maps depict the average large-scale circulations associated with below and above
average rainfall conditions at the individual stations. For the downscaling it was decided to work with the

Figure 3. Same as in Figure 2 but showing results for the validation of the dry season.

Table 1. Large-Scale Circulation Variables Used for the Composite Analysis

No Label Variable Description

1 zg500 Geopotential height at 500 hPa
2 zg1000 Geopotential height at 1000 hPa
3 dt Air temperature difference 1000 hPa minus 500 hPa
4 su700 Zonal moisture transport in 700 hPa
5 sv700 Meridional moisture transport in 700 hPa
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circulation anomalies with respect to a 1978–2007 climatology. The high (low) anomaly patterns serve as
above (below) average rainfall indicators in the large-scale circulation using the variables listed in Table 1.
That is, each station is associated with a unique set of five-multivariate composite pattern for the above
average rainfall and five for the below average rainfall years (ten for each station).
2.2.2. Large-Scale Circulation Predictor Time Series
After each station was assigned its composite pattern, we use the mathematical vector-projection method to
derive for each year an index that measures the correlation and amplitude of the observed circulation
anomaly with the composite pattern. We decided to perform the vector projection with the individual
climate field variables. Thus, for a given station and a given observation year, we obtain 10 scalar values that
describe the state of the circulation with respect to the high and low composite patterns. The vector
projection is applied to the seasonal anomalies of the NCEP/NCAR reanalysis fields (anomalies relative to the
1978–2007 mean). This results in 10 time series indices for the years 1978–2007.

It should be noted that the vector-projection indices contain redundant information due to the physical
linkages between geopotential heights, winds, vertical temperature gradients, and moisture transports
and because the high and low composite patterns exhibit strong negative spatial correlation. Furthermore,
year-to year variations in wet-season rainfall over Hawai‘i appear spatially organized, despite the complexity
of the climatological rainfall pattern (see Figure S1 in the supporting information). This is reflected in the
fact that the vector-projection indices share a large portion of variance among all rainfall stations.

Table 2. CMIP5 Models Used in the Multimodel Ensemble Downscaling

Modeling Center or Group Institute ID Model Name

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau
of Meteorology (BOM), Australia

CSIRO-BOM ACCESS1.0
ACCESS1.3

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1
BCC-CSM1.1(m)

College of Global Change and Earth System Science,
Beijing Normal University

GCESS BNU-ESM

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2
National Center for Atmospheric Research NCAR CCSM4
Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC)

CESM1(CAM5)
Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CESM

CMCC-CMS
Centre National de Recherches Météorologiques/Centre Européen de Recherche
et Formation Avancée en Calcul Scientifique

CNRM-CERFACS CNRM-CM5

LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences and CESS,Tsinghua University

LASG-CESS FGOALS-g2

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences LASG-IAP FGOALS-s2
The First Institute of Oceanography, SOA, China FIO FIO-ESM
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3/-ESM2G/-ESM2M
National Institute of Meteorological Research/Korea
Meteorological Administration

NIMR/KMA HadGEM2-AO

Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)

MOHC (and INPE) HadGEM2-CC
HadGEM2-ES

Institute for Numerical Mathematics INM INM-CM4
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR

IPSL-CM5A-MR
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and National Institute for Environmental Studies

MIROC MIROC-ESM/-ESM-CHEM

Atmosphere and Ocean Research Institute
(The University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC5

Max-Planck-Institut für Meteorologie (Max Planck Institute
for Meteorology)

MPI-M MPI-ESM-MR
MPI-ESM-LR

Meteorological Research Institute MRI MIR-CGCM3
Norwegian Climate Centre NCC NorESM1-M

NorESM1-ME
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In situations where multivariate data sets contain redundant information, principal component analysis (PCA)
offers a universal method to compress a large fraction of the total variability into a few leading eigenmodes.
Here we deploy the PCA mostly for two reasons: (1) to reduce the number of time series that describe
the rainfall-large-scale-circulation relationships and (2) to prewhiten the time series that will be used as
predictors in the multiple linear regression step of the statistical downscaling (see below).

The PCA was applied to four island regions (Kaua‘i, KA; O‘ahu, OA; Maui, MA; Hawai‘i Island, HA) separately. For
example, we applied the PCA to the vector-projection indices fromHawai‘i Island stations using the wet-season
composite results. The PCA compresses the variability of the multivariate data set into a set of eigenmodes
with the four leading modes representing more than 90% of the total variability for the wet season (Table 3).
The principal component (PC) time series of first four modes are used as large-scale climate predictors in the
next step of the statistical downscaling. Six PCA modes were used for the dry season; the larger number of
modes needed to explain about 90% of the total variability indicates that dry-season rainfall variability patterns
are more complex and less organized through large-scale processes than wet-season rainfall variations.

It should be noted that the PCA compression, in effect, determines the spatial degrees of freedom for the
downscaled precipitation changes. The resulting principal component time series are subsequently used as
predictors for rainfall anomalies at individual stations. For each station, we applied multiple linear regressions
(MLR), using the PCA time series as independent variables (predictors), to obtain estimates of the rainfall
anomalies from the large-scale predictor information. Thus, instead of having a set of individual predictor
time series at each station, the predictor information is the same for all stations within one island group.
2.2.3. Cross Validation of the Statistical Downscaling Model
Having found the composite pattern and the corresponding large-scale predictor time series, the MLR was
first fitted using all sample years 1978–2007. An analysis of variance F test, which measures the ratio of
explained to unexplained variance in the regression model, was used to measure the statistical significance.
The majority of stations passed the F test. Furthermore, most stations had statistically significant correlations
(Rcal) between estimated and observed rainfall anomalies for the same set of years used in fitting the MLR.
However, in order to measure the correlation skill with more conservative methods, independent samples
must be used. Since high-quality observations are limited, we applied a Monte Carlo (MC) technique [e.g.,
Wilks, 2006, Section 5.3.2], in which we randomly selected a set of 15 calibration years (without repetition)
from the years 1978–2007. The remaining years were used for cross validation. This was repeated 200 times.
This procedure is applicable for obtaining a conservative estimate of the correlation skill on interannual
time scales.

Future rainfall change projections usually consider changes in the climatological mean over 20 or
30 years, and thus, one should ideally test the performance of the statistical model also on these longer
time scales. The previous Monte Carlo test does not allow for systematic differences in the calibration
and validation sample mean statistics, since random subsamples will have the same sample mean
precipitation values.

Table 3. Cross Validation of the SD Method Using Low Precipitation for Calibration and High-Precipitation Years for
Validation and Vice Versaa

Calibration/Validation Island RMSE PERS (%) RMSE SD (%) SIGN SD (%) Number of Stations

Low/high HA 67 (37) 57 (24) 86 (97) 240 (212)
MA 72 (63) 66 (51) 73 (82) 289 (256)
OA 71 (56) 64 (48) 84 (73) 232 (230)
KA 65 (47) 63 (45) 49 (�1) 152 (147)

High/low HA 67 (38) 73 (29) �1 (79) 238 (232)
MA 72 (63) 49 (46) 86 (55) 291 (263)
OA 72 (57) 62 (51) 70 (72) 233 (233)
KA 66 (46) 43 (40) 98 (88) 148 (145)

aStatistics are based on the station samples in each island region (sample size is given in the column “number of
stations”). Columns “RMSE PERS” and “RMSE SD” show the root-mean-square error for the persistence estimates versus
observed and the downscaled estimates versus observed, respectively, for the subsampled years mean. Values are in
percent rainfall anomalies. “SIGN SD” measures the agreement in downscaled and observed sign of anomalies. Note that
0% indicates that half of the station estimates agree in their sign. Positive (negative) values indicate positive (negative)
correlation in the signs. Numbers in cells are for the wet season and in parenthesis for the dry season.
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We also conducted a cross validation similar to that done in TD09, where we used the earlier years
(1958–1976) for validation to obtain a more conservative test of the SD model. The latter cross-validation
results show a considerable decrease in the correlation between downscaled and observed rainfall
compared with the Monte Carlo cross validation. An immediate interpretation would suggest that the
statistical relationships that were estimated on (mainly) variances in the interannual to decadal time scales
are different on multidecadal time scales. However, as we have shown in a related study [Elison Timm et al.,
2013], moisture variables from reanalysis data sets are less reliable prior to the satellite era. The lost
downscaling skill during the earlier years may be in part attributable to the loss in accuracy of the earlier
reanalysis data [Brands et al., 2012] and/or to a real change in the strength of the leadingmodes of variability in
the atmosphere [Diaz et al., 2001]. In particular, the long-term mean precipitation changes are affected by
differences in the input data stream in the data assimilation process. In the end, the test remained inconclusive
for measuring the skill of the statistical downscaling on 30 year mean changes.

As a final attempt to test whether the downscaling has “predictive skill” for mean precipitation changes,
we split the 30 year data into the 15 highest and 15 lowest rainfall (averaged over the island stations)
years and used them for cross validation. The root-mean-square error (RMSE) is calculated for each island
group and for each season using the 15 year means of the estimated rainfall anomalies (in units of
percent of subsample mean rainfall). The RMSE is calculated from the station sample relative to the
observed means. For comparison, the RMSE of the persistence model (no change relative to the
calibration mean) is given.

The sign-test measures the number of agreements in the sign of the estimated rainfall anomaly and the
observed anomaly. The sign function was used to transform anomalies into�1 and +1 values for negative and
positive anomalies, respectively. Then the sum of the product of the sign values (observed times downscaled) is
divided by the total number of stations and expressed in percent. It should be noted that the percentage of
stations where downscaled and observed changes agree in sign can range from �100 to 100%. Thus, the
higher the number above zero, the better the agreement.

3. Results
3.1. Cross Validation of the Statistical Downscaling Model

Figure 1 shows the mean of the correlation coefficients for each station from SDmodels fitted with the 200 MC
samples. Very high correlations between observed and estimated rainfall anomalies are found at all stations
(almost all significant at the 5% level). On Maui and Hawai‘i Island (Figures 1c and 1d) a spatial pattern emerges
that indicates higher correlations in regions with high rainfall. Even for the dry leeward sides of islands,
correlation values above 0.6 are found, explaining more than 30% of the variability in the observations. Similar
results are also seen in the dry season (not shown).

More informative than the fitted calibration skill is the result from the correlation with the independent
sample years. Figure 2 shows the mean correlation of the MC cross validation for the wet season. The
correlation is, in most regions, lower, and a clear spatial pattern is observed. Higher correlations are
obtained in the regions with high rainfall rates and frequent rain events. The lowest correlations are
found in the dry regions of the islands, in particular the leeward sides; in fact the climatological mean
precipitation amount and the explained variance of the cross correlation are correlated. Only a few
stations show no correlation in the cross validation. The statistical downscaling skill of dry-season rainfall
(Figure 3) is lower than that of the wet season. The small-scale nature of rain-producing synoptic
disturbances and their infrequent appearance during the summer season make it more difficult to link
rainfall to the large-scale seasonal mean circulation, as we have previously noted (TD09). Projections in
many dry regions are not statistically robust, and cross-validated correlations are near zero (Figure 3).

The calibration with the data divided into equal-sized samples with the lowest and highest rainfall anomaly
years (each 15 years) and the remaining data withheld for cross validation mimics a test of the downscaling
model for reproducing different climate means. (We note that one must be careful in the statistical
characterization of these subsamples. Here we assume that the subsamples are from the same climate state.)
Table 3 summarizes the main results from this test. In all except one case, the RMSE of the downscalingmodel
is smaller than the persistence model.
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The sign test measures the number of agreements in the sign of the estimated rainfall anomaly and the
observed anomaly. In general, high positive percentage numbers were found (Table 3), indicating that the
majority of stations have the same sign in the observed and SD estimated anomalies. A few exceptions are
noted: Kaua‘i failed the high rainfall cross-validation sign test for the dry season; for Hawai‘i Island, the sign test
revealed low downscaling skills for the wet season when attempting to apply the SD model to the years with
negative rainfall anomalies. It should be noted that the years were categorized based on station-averaged
rainfall anomalies, and not all stations have experienced large rainfall anomalies. Overall, it is concluded that the
method applied here to statistically downscale future rainfall changes is useful for projecting circulation-driven
changes in the rainfall pattern in Hawai‘i. The confidence in the projected changes is higher for the wet
season than for the dry season. While the sign of the projected anomalies is likely to be correct, the absolute
amplitude of the changes has to be considered with caution and should be compared with dynamical regional
modeling results [Lauer et al., 2013; Zhang et al., 2012].

3.2. Large-Scale Circulation Anomalies

We illustrate the large-scale circulation anomalies here for the wet season using Hawai‘i Island and Kaua‘i as
examples (similar patterns are found for O‘ahu and Maui Nui). The regression pattern associated with the first
PC time series for Hawai‘i Island (Figure 4) and Kaua‘i (Figure 5) have a north-south dipole in the 500hPa
geopotential height field, with a resemblance to the Pacific-North American (PNA) pattern: lower pressure in the
northern (extratropical) sector is associated with higher pressure in the subtropical and tropical central parts of
the domain. Similar features are observed near the surface in the 1000hPa geopotential field. The PC time
series of the first PCA mode has the strongest correlation with the PNA and El Niño–Southern Oscillation
(ENSO) (NINO3.4) indices (over the years 1979–2007 used here; see Figure 6 and Table 4). The corresponding
meridional and zonal components of the moisture transport in 700 hPa are shown in Figures 7 and 8 for

(c) (d)

(a) (b)

Figure 4. Analysis of the large-scale circulation pattern for Hawai‘i Island during the wet season: Associated regression
pattern in the 500 hPa geopotential height field (colors in m/stddev (PC)) and the 1000 hPa geopotential heights
(contours, in 0.2m/stddev (PC)) intervals). In gray are indicated contours for the regression pattern of the 1000–500 hPa
temperature difference (K/stddev (PC)). Four leading PC time series were used: (a) PC 1; (b) PC 2; (c) PC 3; and (d) PC 4. Note
that the PC time series have different standard deviations (40, 20, 12, and 10).
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Hawai‘i Island and Kaua‘i, respectively.
The transport anomalies in the
extratropical regions closely follow the
expected geostrophic wind anomalies in
the pressure fields. This suggests that
the dynamic component plays a crucial
role in the total moisture transport
variability. Comparing regression
patterns associated with the four PCA
modes, the regression patterns need not
be orthogonal despite the orthogonality
constraints of the PC time series. In fact,
the regression pattern of PC 3 projects
onto the ENSO-teleconnection pattern
and the PNA pattern as well, and the
time series of PC 3 is weakly correlated
with PNA and NINO3.4 index. (Figure 6
and Table 4). These results confirm the
commonly well-known fact that ENSO
and PNA are the most important
large-scale circulation modes for
year-to-year rainfall variability in Hawai‘i
[Chu, 1995; Chu and Chen, 2005]. PC 4
and PC 2 are not correlated with ENSO

(c) (d)

(a) (b)

Figure 5. Same as Figure 4 but for the island of Kaua‘i during the wet season.

Figure 6. Principal component (PC) time series for Hawai‘i Island and
large-scale circulation indices for the wet-season months (November–April).
The first and fourth PC time series are shown in black and blue, respectively.
The NINO3.4 time series (gray) is shown for comparison. Note that PC 1
time series was inverted in sign to stress the correlation with ENSO.
(The associated regression pattern in Figures 4a and 7a show
anomalies representing La Niña years).
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and the PNA index, and the large-scale circulation anomalies do not project onto the ENSO/PNA
teleconnection pattern. In particular, PC 4 is associated with a pronounced east-west dipole in the
central and eastern extratropical/subtropical Pacific. Further, this mode is associated with large
anomalies in the vertical temperature gradient centered over the Hawaiian Islands and moisture
transport anomalies that follow the pressure-driven wind anomalies, which result in meridional transport
anomalies northeast of the islands. In the next section, it will be shown that this circulation mode is
an important component of the future climate change signal in the CMIP5 future scenarios. It should
also be noted that moisture transport anomalies are larger in the tropics than in the extratropics due to
the larger amplitude of changes in the moisture content.

Table 4. Correlation Between Principal Component Time Series and NINO3.4 and PNA Indexa

HA KA

PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

NINO3.4 �0.79 0.11 �0.44 0.07 �0.82 0.01 �0.42 �0.14
PNA �0.68 0.12 0.37 0.20 �0.67 0.18 0.32 �0.15

aData from the wet-season years 1978–2007 are used. HA and KA denote the PC time series of the Hawai‘i Island
and Kaua‘i.

(c) (d)

(a) (b)

Figure 7. Regression pattern for the Hawai‘i Island during the wet season showing the moisture transport anomalies at
700 hPa level associated with the four leading modes in the predictor time series. Four leading PC time series were used:
(a) PC 1; (b) PC 2; (c) PC 3; and (d) PC 4. Note that the PC time series have different standard deviations (40, 20, 12, and
10, respectively). The length of the vector at the bottom indicates the magnitude of the change associated with one
standard deviation in the PC time series. Blue and yellow/orange shadings illustrate the regions with convergence and
divergence, respectively.
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The regression coefficients were interpolated with ordinary kriging for each of the four island groups. Maps
are shown for the PC 1 time series (Figure 9a) and PC 4 time series (Figure 9b). The regression pattern analysis
demonstrates two important connections between large-scale climate and local rainfall. First, we find in the
regression pattern signatures of ENSO (and PNA), the primary drivers for rainfall variability in Hawai‘i during
the wet season. Typical El Niño (La Niña) years exhibit a uniform sign in the anomalies with below (above)
average wet-season rainfall across the Hawaiian Islands (Figure 9a). The regression between PC 4 and the
station rainfall anomalies, on the other hand, shows a dipole pattern between the dry leeward areas of the
islands and the wet windward sides (Figure 9b). We will discuss this mode further in section 4.

3.3. Projected Future Changes

The statistical downscaling of the CMIP5 general circulation models was done in a multimodel ensemble
mode with equal weights given to the 32 available models. We used the “historical” simulations and future
scenarios RCP4.5 and RCP8.5 (2006–2100). The process steps are similar to the downscaling of the reanalysis
data. In order to avoid model biases, we use the modeled present-day (1975–2005) climatology to standardize
the resulting predictor time series. The simulated future changes in the predictors are measured relative to
their present-day mean states.

To put the temporal changes of the predictor information into perspective, we show in Figure 10 how the
30 year averages in the predictor time series evolve in the historical and future scenario simulations; Hawai‘i
Island is shown as an example, but similar results are obtained for the other islands. The climate change
signal of the multimodel ensemble projects mostly on the circulation anomaly pattern associated with the
first and fourth PCA modes, which were used to compress the information from the stations’ composite

(c) (d)

(a) (b)

Figure 8. Same as Figure 7 but for the island of Kaua‘i during the wet season.
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analyses. This analysis indicates that the majority of the models project a continuous trend in the circulation
anomalies from the 20th into the 21st century. Whereas the anomalies are small in the 20th century, the
future changes are projected to grow in amplitude. In particular, the circulation changes resemble the
anomaly pattern associated with the fourth mode and the first mode of the PCA (see circulation anomalies
shown in Figures 4d, 5d, 7d, and 8d). The ensemble member spread increases with increasing signal
amplitude, but the majority of the models agree at least in their sign. For PC 1 and PC 4, more than 75% of the
models show negative and positive anomalies, respectively, in the future (see thick bars in Figure 10).

Using the regression coefficients, the temporal changes in the four-predictor time series are translated to
rainfall anomalies at each station. For each of the 32 CMIP5 models, we estimated the percentage rainfall
changes at all stations. The geographic map of the point-estimated changes clearly shows regional features
that would not be directly available from the coarse-resolution CMIP5 model output. Stations on the wet
sides of Hawai‘i Island and Maui, for example, show neutral or positive rainfall anomalies for the future
scenarios, and strong negative anomalies are seen in the dry regions on the leeward sides (Figures 11 and 12).
The future rainfall anomalies are essentially a linear superposition of the regression coefficients associated
with PC 1 and PC 4. An “ENSO-related” climate change component is represented by PC 1 and leads to an
island-wide rainfall decrease, and PC 4 represents zonal shifts in the subtropical high or its westward
extension and modifies the contrast between the wet and dry sides on the islands. We note that this
enhanced or reduced wet-dry contrast in Hawai‘i is a feature of the wet season. This mode of variability was
not detected during the dry-season months.

Figure 9. Maps of interpolated regression coefficients associated with the first and fourth PC time series for the wet season.
(a) The leading mode shows a uniform pattern with small regional variations. (b) A dipole pattern is characterizing features
of the regression pattern with PC 4.

Figure 10. Wet-season time evolution of the PC time series for the island HA. Thirty year time averages of the PC time series
were calculated from the 32-member multimodel ensemble using the CMIP5 historical and RCP4.5 scenarios. Colors
highlight PC 1 (black), PC 2 (red), PC 3 (green), and PC 4 (blue). The ensemble statistics are shown: 30 year ensemble mean
(circles), median (crosses), minimum-maximum range (dotted thin bars), and the 25%–75% quantile range (thick vertical
bars). Note the continuous trend from the historical simulations to the future scenario in PC 1 and PC 4.
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One of our priorities was to extend the spatial representation of the point station estimates. Whereas our
statistical downscaling results are obtained at irregularly distributed point locations, geospatial methods
were used to interpolate the downscaling results onto a regular grid. We have applied ordinary kriging for the
four island regions with 0.5min resolution. The resulting maps for the RCP4.5 and RCP8.5 scenarios are shown
in Figure 13. The interpolated maps show clearly that the windward facing regions are expected to maintain
or to slightly increase their wet-season rainfall. Other parts of the Hawaiian Islands, however, are projected to
experience a continued trend toward lower wet-season precipitation.

The same statistical downscaling technique has been applied to the dry-season rainfall to illustrate that wet
and dry seasons are under different climatic controls. Overall the dipole pattern in the projected changes is
less pronounced during summer seasons, and only O‘ahu appears to have contrasts between the wet and dry
sides of the island similar to that projected for the wet season. Given the low cross-validation skill, it is not
surprising that Kaua‘i shows near-neutral conditions. Maui and Hawai‘i Island are projected to have dryer
conditions in most areas, including the high-precipitation sides along the windward slopes of the mountains.

4. Discussion

In this section, we provide a critical reflection on the implicit assumptions in our statistical downscalingmethod.
We start with the general problem of the stationarity assumption in statistical downscaling methods. The last
part of this section is devoted to the physical interpretation of the statistically derived changes in local rainfall.

4.1. Stationarity of the Rainfall-Circulation Relationships

An implicit, underlying assumption in this and other statistical downscaling methods—we are not aware of
any truly nonstationary statistical downscalingmethod at this time—is deeply rooted in the scientific method
of empiricism: that is, the statistical relationship established from past experiences is expected to describe

Figure 11. Statistical downscaling results of the 32-model CMIP5 ensemble for the moderate warming scenario RCP4.5.
Shown are the stations’ multimodel ensemble medians for wet season averaged over the period 2041–2071.
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past and future processes with similar levels of uncertainty and to the degree possible untainted by any
systematic biases. Our downscaling method relies on information from the variable covariances to form the
composite patterns and multiple linear regression models. Given the complexity of the rain formation
processes in Hawai‘i that we described in section 1, it is possible that changes in the flow, vertical stability, or
moisture content are capable of changing the fundamental mechanisms involved in the orographically
induced rainfall. In such a case, we argue that our statistical downscaling should still give reasonable results in
the moderate warming scenarios for the near future. The temperature changes over Hawai‘i are expected to
shift the daily mean temperatures to levels that are currently daily maximum values by the end of the century
[Lauer et al., 2013]. Furthermore, interannual temperature variability has influenced Hawai‘i over the past years
and decades [Giambelluca et al., 2008; Diaz et al., 2011; Diaz and Giambelluca, 2012]. Yet, no systematic and
profound changes in the rain formation processes have been reported for trade wind regimes, land-sea
breezes, or frontal systems. Thus, we argue that sudden nonlinear shifts in the rainfall pattern are unlikely to
destroy the climatological relationships at least in the early part of the 21st century. This inductive inference
is susceptible to a logical fallacy in which we might misinterpret “absence of evidence” as “evidence of
absence.” But without a priori theoretical knowledge of the existence of “tipping points,” we have no reason to
speculate if and when such a critical transition in the rainfall pattern may take place.

Nevertheless, if we assume that some statistical relationships would break down, it is worth exploring how
nonstationarity could bias our results. Key to the downscaling was the formation of composite pattern
upon which the climate models are projected. Changes in the teleconnection pattern have been reported
for the ENSO-rainfall teleconnection pattern under future warming in the CMIP5 multimodel ensemble
[Bonfils and Santer, 2010]. Mathematically, teleconnection patterns are vectors in a higher-dimensional
space. They can change their strength (amplitude of the pattern), or change their spatial structure, or in
worst case change their sign completely. If only the amplitude of our composite pattern was changed, it
would not affect the vector projection result itself (due to normalization to unit length in the vector

Figure 12. Same as in Figure 11 but for the more severe warming scenario RCP8.5 (wet season 2041–2071).
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projection), but it would cause a bias in the amplitude of the projected rainfall changes through the
subsequent multiple linear regression model.

If on the other hand the vector changed its direction, this would contribute two types of errors to the rainfall
downscaling. First, the change in the direction leads to a scaling bias (due to normalization to unit length
in the vector projection), and second, a new orthogonal direction emerged in the large-scale circulation with
influence on the rainfall anomalies. The latter is unaccounted for in the statistical downscaling model
(unless this pattern change is projecting onto one of the other modes that are used as projection vectors).
In either case, our defined static projection pattern cannot capture the true rainfall dependence any longer.

How large the individual biases could become in future would further depend on the pattern of the projected
circulation changes—even if we had knowledge of the future teleconnection pattern (see Figure S2).
Whether changes in rainfall amplitudes presented may be overestimated or underestimated is not
immediately clear. In the worst case, our stationarity assumption could lead to misleading signs in the
projected rainfall changes. The risk is considered low, given the fact that we include physically motivated
predictor variables such as moisture transport and vertical stability. It has been argued that inclusion of
precipitation and moisture-related predictor variables can reduce the risk of the nonstationarity problem in
statistical downscaling [Diaz et al., 2001; Meehl and Teng, 2007; Sterl et al., 2007; Kug et al., 2009; Herceg Bulić
et al., 2011; Kwon et al., 2013; Stevenson, 2012; Coats et al., 2013; Zhou et al., 2014], but this assumption may
miss some theoretical foundations, too [see also Smith et al., 2014].

In order to test the stability of the teleconnection between large-scale variables and precipitation over the
Hawaiian Islands, we analyzed the CMIP5models. For eachmodel the composite patterns were estimated in the
historical runs and the RCP4.5 and RCP8.5 in 30 year time windows. The average of the modeled wet-season
precipitation was used to form high and low precipitation composites (similar to the actual statistical
downscaling method) and calculate the difference between high and low composites. Taking the historical
scenario years (1975–2005) as the reference composite pattern, we then compared the future composites in

Figure 13. Interpolated maps of the statistically downscaled rainfall scenarios RCP4.5 and RCP8.5 for the period 2041–2071
(31 year time mean). Shown is the ensemble median result from 32 members from CMIP5. Units are given in percent.
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their spatial correlation and spatial standard deviation [Taylor, 2001]. The results for the composite pattern in the
500hPa geopotential height fields are summarized in the Taylor diagram in Figure S3. It can be seen that the
multimodel ensemble has a wide range of variability in the composite pattern. This is partly attributed to
sampling uncertainty, since the historical runs already show large a spread in the amplitude and correlation
values when the sampling window is changed using different years between years 1955 and 2005.

Compared with the historical samples, the future projections (red and orange symbols) slightly drift into
systematic lower spatial correlation sectors but with a slight systematic increase in the range of standard
deviations. Similar results have been obtained when using the specific humidity around Hawai‘i as the
compositing information. These results indicate that the current choice of the spatial domain includes areas
with little robust information for Hawai‘i’s regional rainfall. The optimal domain size demands further
investigations [Timm and Diaz, 2009; Norton et al., 2011]. For example, Elison Timm et al. [2013] restricted the
spatial composite pattern to statistically significant subregions. We see in the deployment of pattern
matching statistics a potential way to objectively find the most robust teleconnection pattern.

Although these results may indicate evidence against the nonstationarity assumption of our particular
method, a deeper investigation of the stability of teleconnection pattern over the North Pacific is suggested
as a future research direction.

Whether the true covariance relationship between the local rainfall and the large-scale circulation behaves
similar to the CMIP5-based teleconnection analysis cannot be answered until high-resolution dynamical
downscaling methods will allow for systematic tests. At present, it remains a fundamental challenge to
support the stationarity assumption for future climate scenarios [Wilby, 1997; Charles et al., 1999; Fowler et al.,

Figure 14. Summary statistics for the four islands groups. The top charts show the percentage changes averaged over the
islands for the wet season (using interpolatedmaps). Bottom row shows the statistic for the dry season. Each island has four
scenarios (RCP4.5 and RCP8.5 for the middle and late 21st century; see color legend). Right figures present for comparison
the area-averaged precipitation anomalies when averaging the percentage changes (as shown in Figure 13) directly.
Left figures show for comparison area-averaged precipitation changes expressed in percent of the island-average seasonal
rainfall climatology from the Rainfall Atlas of Hawai‘i [Giambelluca et al., 2013]. Note that for that purpose, we first converted
the local percentage anomalies into absolute anomalies (in units of mm).
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2005; Vrac et al., 2007; Christensen et al., 2008; Raje and Mujumdar, 2010; Maraun, 2012; Hewitson et al., 2013].
The latest IPCC report from working group 1 acknowledges that statistical downscaling relies on the
“stationarity hypothesis,” without giving any comprehensive discussion of its inherent problems or possible
solutions [IPCC, 2013, Chapter, 9.6].

Observational evidence for nonstationarity on decadal or longer time scales is difficult to assess, given the
relatively short observational data period. Therefore, we lack empirical support for determining if or
when we can expect a breakdown of the historical relationships, which could undermine the statistical
downscaling methods. Efforts toward developing more rigorous tests of stationarity are in development
[Schmith, 2008; Gutiérrez et al., 2013; Hertig and Jacobeit, 2013] but remain insufficient. Other critical tests
may be needed to improve the choice of the statistical model and its parameters [Estrada et al., 2013],
and rigorous cross-validation methods can help to assess skills and biases of the statistical models.
Alternatively, one could pursue a cross-validation strategy using surrogate data from dynamically downscaled
climate scenarios. Recent attempts to test statistical model performance under present-day and future
conditions within a regional climate model appear to be the most promising efforts to answer that question
(Keith W. Dixon, presentation at the AMS 25th Conference on Climate Variability and Change, Austin Texas,
5–10 January 2013; https://ams.confex.com/ams/93Annual/webprogram/Paper221738.html).

4.2. Physical Interpretation of the Statistical Results

The circulation anomalies in the CMIP5 models show a trend toward stronger Aleutian Lows and stabilization
of the atmosphere in the subtropics. The statistical downscaling method used here identifies this category of
circulation anomalies as an El Niño-like condition/positive PNA pattern and thus associates drier than average
conditions with this projected circulation anomaly. Associated with this mode is a poleward shift in
wintertimemidlatitude storm tracks near Hawai‘i, resulting in fewer cold fronts, Kona lows, and other cyclonic
disturbances during the wet season, which produce rainfall on both leeward and windward sides of the
islands. However, the ensemble median circulation anomalies that develop through the 21st century project
even more strongly on a secondary mode that is uncorrelated with the typical ENSO/PNA signature.
These circulation anomalies represent a zonal shift in the position or extension of the subtropical high or a
systematic change in the positioning and eastward migration of extratropical troughs. In the past, this type of
large-scale circulation anomaly is associated with a rainfall pattern that enhances the rainfall contrast
between the wet windward and dry leeward regions (on Maui, O‘ahu, and Hawai‘i) and that generally has its
greatest effect in areas where rainfall amounts are controlled by cyclonic disturbances. It should be noted
that the Hawaiian Islands have experienced a number of years with station rainfall anomalies showing a
bimodal distribution. For example, the 1994–1995 wet season exhibits a dipole pattern in the observed
rainfall anomalies with strong negative anomalies in the leeward sides and slightly enhanced or average
rainfall in the windward areas. Two years later, the reverse pattern was observed in Hawai‘i. This mode of
variability was identified in earlier studies [Lyons, 1982].

It appears that lower-ranked climate modes (PCA modes with less explained variability) are important for
projecting regional climate change [Bond et al., 2003; Keeley et al., 2008]. In our downscaled projections, the
subtropical zonal dipole pattern constitutes a robust feature in multimodel ensemble projections. Although
the dynamical reasons behind these circulation shifts are currently not well understood, an interplay between
the position and extension of the Asian jet and subtropical cyclone activity and blocking events might play an
important role in the central and eastern Pacific [Chu, 1995; Huang et al., 2004; Otkin and Martin, 2004b;
Jayawardena et al., 2012]. Zonally aligned dipole-like circulation anomaly patterns can be found in various
mode decompositions of the atmospheric circulation [Wallace and Gutzler, 1981; Barnston and Livezey, 1987;
Johnson and Feldstein, 2010]. The combined effects from these circulation changes indicate that the largest
rainfall decreases are expected in the dry regions, with neutral or positive anomalies projected for the wet
windward sides of the islands. This spatial pattern was not resolved in our earlier study (TD09).

Future changes in circulation anomalies suggest that the dry season will become dryer. However, our
confidence in the spatial pattern and in the amplitudes of the projected changes is lower than for the wet
season. Lower confidence in the dry-season results is mainly due to the nature of rainfall-generating
processes during the summer months. With the exception of the trade wind dominated rainfall in windward
areas, summer rainfall is limited to a small number of significant weather events during the season. The
passing of strong fronts and the occurrence of Kona lows are limited to the wet season [Daingerfield, 1921;
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Sanderson, 1993; Otkin and Martin, 2004a; Caruso and Businger, 2006]. During the summer season atmospheric
disturbances are of smaller scale and less frequent, leaving thus a smaller imprint in the seasonal mean
circulation anomalies than winter disturbances. Thus, the effects of increases in tropical storms in the central
Pacific [Murakami et al., 2013] are not accounted for in the statistical model. It is clear that the seasonal
mean circulation anomalies, which are used as linear predictors for local rainfall, cannot provide sufficient
statistical information to obtain reliable rainfall estimates. We note, however, that nonlinear methods could
improve the dry-season downscaling skill [e.g., Norton et al., 2011].

In comparison with our earlier study (TD09), the magnitude of the precipitation changes projected here are
larger on average. In the analysis presented here, we project rainfall anomalies in the ensemble median of
severe magnitude by 2040–2070. In many drought-prone regions the future projections suggest reductions
by more than 50%, but the absolute values must be considered with caution. We note that the concept of
the statistical downscaling is building on the assumption that future climate states are shifting the frequency of
weather pattern and circulation anomalies. Changes in the relationship between circulation anomalies and
regional rainfall could ultimately invalidate this assumption. Our results are understood as a linear approach to
project “small” or moderate changes. Nonlinear processes in the hydrological cycle response are not captured
in this model. Independent downscaling results with a dynamical regional model (C. Zhang and K. Hamilton,
personal communication, Honolulu, Hawaii, 2014) showqualitatively similar spatial patterns, but the amplitudes
of the changes in dry areas are smaller, and the positive anomalies have larger values in the regional model
simulation. In the dynamical model simulation, the orographic effects on the moisture convergence seem to
dictate the regional response in the rainfall in both seasons. It should be noted that the applied pseudoglobal
warming method does not account for changes in the weather pattern and their frequency.

5. Summary

A linear statistical downscaling approach was applied to the ensemble median of 32 CMIP5 model simulations
of the present-day and modeled future climate scenarios. The resulting statistical point estimates were
interpolated to produce maps of expected rainfall changes for the main Hawaiian Islands. Given past
observations of relationships between seasonally averaged circulation anomalies and local rainfall anomalies,
the information from the CMIP5models was transformed into future rainfall anomalies. Under an assumption of
stationarity in the relationship between local rainfall and large-scale climate, the future scenario for the
Hawaiian Islands projects, on average, a decrease in the rainfall (Figure 14) and, hence, reduced availability of
freshwater resources. We estimate a decrease in wet-season rainfall in most areas of the islands with the
exception of the trade wind dominated wet regions along and above the eastern slopes of the mountains,
where slight increases in the rainfall can be expected based on the projected CMIP5 circulation changes.

Despite all the limitations of the statistical downscaling method, it is estimated that a trend toward drier than
normal conditions is likely to affect the climatically dry regions of the Hawaiian Islands during both seasons.
The wet sides of the islands are likely to see small increases in the average wet-season rainfall amounts.
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1. Introduction 19 

In this supplementary section we provide additional information on the climatological mean 20 

rainfall pattern in Hawaiʻi. Further, we illustrate our discussion of the stationarity assumption 21 

that underlies our statistical downscaling method with two supplementary figures. First, a 22 

geometric interpretation of how future changes in the teleconnection pattern could affect the 23 

downscaled precipitation results. Second, we try to obtain insight into the stationarity assumption 24 

from CMIP5 model data itself. For this purpose we assumed that the CMIP5 model rainfall over 25 

grid boxes in the Hawaiian Island region are reasonable proxies for studying the stationarity of 26 

teleconnection pattern. We did not test how similar the derived composite pattern are with 27 

respect to the rainfall station’s composite pattern, but instead looked at the relative changes in the 28 

composite pattern between the historical 20th century simulations and the future mid and late 21st 29 

century  simulations in the two scenarios RCP4.5 and RCP8.5. We worked with a smaller subset 30 

of the 32 CMIP5 models listed in Table 2 in the main text. This does not affect the results 31 

presented here. 32 

2. Precipitation climatology  33 

The statistical downscaling of seasonal mean rainfall changes works exclusively with rainfall 34 

percentages. The seasonal mean rainfall climatology that we used here as a reference value refers 35 

to the average rainfall amounts of the years 1978–2007. The wet season rainfall (November-36 

April) and dry season (May-October) climatologies were derived from monthly gap-filled 37 

monthly mean station data of the Rainfall Atlas of Hawai´i [Giambelluca et al., 20013] 38 

(http://rainfall.geography.hawaii.edu/). A geospatial interpolation method (Kriging) was used to 39 

derive the interpolated map surfaces from irregularly spaced station data points. We provide in 40 

http://rainfall.geography.hawaii.edu/
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Figure 1 the maps with the climatological seasonal mean rainfall. We note that these seasonal 41 

climatologies are not part of the official Rainfall Atlas of Hawaiʻi. The gridded data sets are 42 

available from the corresponding author upon request.  43 

3. Geometric considerations associated with the stationarity assumption 44 

We derived empirical relationships between local rainfall and large-scale circulation using 45 

information from the covariance structure among rainfall stations and large-scale climate. The 46 

composite method adopted in this study is a means to cluster the large-scale circulation 47 

conditionally dependent on the local rainfall. The resulting pattern from the high-precipitation 48 

and low-precipitation subsamples and their differences form a set of teleconnection patterns, in 49 

which a change in one random variable at one location is associated with changes in a geospatial 50 

field represented by a random vector variable.  51 

 A key step in our statistical downscaling method is the projection of future changes in the 52 

geospatial field onto these teleconnection patterns, which are assumed to be stationary in time. 53 

This way we measure the correlation and the amplitude of the climate change pattern relative to 54 

the teleconnection pattern: 55 

𝑝0 =  
〈𝑦⃗, 𝑥0⃗⃗⃗⃗⃗〉

|𝑥0⃗⃗⃗⃗⃗|
=  〈𝑦⃗, 𝑒0⃗⃗ ⃗⃗ 〉 56 

Here 𝑥0⃗⃗⃗⃗⃗ and 𝑦 ⃗⃗⃗ ⃗ are n-dimensional vectors representing the teleconnection pattern at present day 57 

and a future climate change pattern, respectively. The dimension of the vector space is given by 58 

the spatial grid (25x21) in our case. Note that the vector projection uses unit-length vectors 𝑒0⃗⃗ ⃗⃗  for 59 

the projection direction (by dividing the vector-product by the length of the teleconnection vector 60 

|𝑥0⃗⃗⃗⃗⃗| (see Figure 2)). Note that a climate change vector orthogonal to a teleconnection pattern 61 
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would lead to a projection index equal to zero and thus would not induce any change in the 62 

estimated rainfall anomalies.  63 

If the teleconnection pattern changed in future, differences between high and low precipitation 64 

anomalies would be associated with a future projection direction that is given by 𝑒𝑓⃗⃗⃗⃗ . In the 65 

illustrated example (Figure 2) a large change in the spatial teleconnection pattern is implied. 66 

Together with the particular direction of the climate change vector, this example shows a case, 67 

where indeed the bias from using stationarity assumption would be severe. The true projection 68 

index is given by 69 

𝑝𝑓 =  
〈𝑦⃗, 𝑥𝑓⃗⃗ ⃗⃗ 〉

|𝑥𝑓⃗⃗ ⃗⃗ |
=  〈𝑦⃗, 𝑒𝑓⃗⃗⃗⃗ 〉 70 

Since the climate change signal and the original teleconnection vector form a wide angle (low 71 

spatial correlation) and since the change in the teleconnection pattern is large and pointing away 72 

from the climate change vector, the net result is a much smaller signal amplitude and even a 73 

change in the sign. The bias induced by the stationarity assumption is 74 

 ∆𝑝 =  𝑝0 − 𝑝𝑓 =   〈𝑦⃗, 𝑒0⃗⃗ ⃗⃗ 〉 − 〈𝑦⃗, 𝑒𝑓⃗⃗⃗⃗ 〉 =  〈𝑦⃗, ( 𝑒0⃗⃗ ⃗⃗ − 𝑒𝑓⃗⃗⃗⃗ )〉 = 〈𝑦⃗, 𝑑 〉 75 

Note that difference vector  𝑑 between the present-day and future projection direction vectors 76 

consists of a vector component parallel and orthogonal to the present-day projection direction 77 

vector. Thus  𝑑 can be expressed as a linear combination of   𝑒0⃗⃗ ⃗⃗  and an orthogonal direction 78 

vector  𝑒0⊥
⃗⃗⃗⃗⃗⃗⃗. Therefore the bias or error induced by the stationarity assumption of a single 79 

projection pattern (single direction vector) is:  80 

∆𝑝 =  𝑠〈𝑦⃗, 𝑒0⃗⃗ ⃗⃗ 〉 +  𝑟〈𝑦⃗, 𝑒0⊥
⃗⃗⃗⃗⃗⃗⃗〉 .  81 
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The first term on the right hand side is a scaling error, which by itself suggests (s<1) that we 82 

would overestimate the precipitation anomaly. However, this can be easily compensated for by 83 

the second term. It is clear that the change in the circulation (𝑦⃗) and in the teleconnection pattern 84 

determine the final bias of the results. In our illustrated example, the difference vector lines up 85 

more closely with the climate change direction vector, leading to a positive bias in the projection 86 

index and even a reversed sign compared with the true projection index 𝑝𝑓. 87 

Finally, we point out that we used a multivariate set of teleconnection patterns, which could have 88 

a cancelling effect or reinforcing effect on the individual errors. Further investigations will be 89 

needed to develop more robust statistical downscaling methods for coping with non-stationary 90 

teleconnection patterns. Furthermore, a change in the teleconnection pattern in future climate 91 

would only affect the projection index through change in the direction of vector 𝑥 ⃗⃗⃗ ⃗ not by 92 

changes in the amplitude of the teleconnection itself. However, the projection index is the basis 93 

of the predictor information that is translated into rainfall anomalies through a PCA-based 94 

multiple linear regression model. These MLR regression coefficients are scaling factors that 95 

translate the projection indices into precipitation anomalies. The regression coefficients are again 96 

assumed stationary in time, and thus a scaling error would be the implicit consequence of this 97 

second stationarity assumption.    98 

 99 

3. Taylor-diagram for descriptive analysis of the stationarity in teleconnection pattern. 100 

Taylor-diagrams depict the spatial correlation between two vectors and the standard deviation 101 

ratio of the two vectors. Here, we used the Taylor-diagram as a descriptive tool to compare the 102 

modeled teleconnection pattern. The historical runs from 24 CMIP5 models were used to define 103 
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a ‘present-day’ teleconnection pattern. To this end, the six grid boxes encompassing the region of 104 

the main Hawaiian Islands were averaged into a wet season precipitation index. This index was 105 

used to form high and low precipitation composites with the large-scale circulation fields (here 106 

we show only the 500 hPa geopotential height results). Likewise, we analyzed the future 107 

teleconnection pattern using the RCP4.5 and RCP8.5 scenario years 2040–2070 and 2070–2099. 108 

This way we obtain a first qualitative view on the stationarity of the teleconnection pattern.  109 

The results show that the teleconnection patterns already have a large range of variability in the 110 

historical runs, when the sampling window is slightly shifted. This indicates that the 111 

teleconnection pattern is rather weak, or that the chosen geographic domain is too large and 112 

includes a number of grid points that are physically independent in the Hawaiian region. It is also 113 

a measure of the sampling variability (resulting from 30-year samples), since we cannot expect a 114 

fully deterministic relationship between rainfall anomalies and 500 hPa geopotential height 115 

fields. We tested additional combinations with moisture transports and also specific humidity as 116 

index and field variable. Similar ranges of spread were observed. With the knowledge of this 117 

large range of uncertainty in the last 50 years of the historical runs, the future scenarios show 118 

some decrease in the overall spatial correlation and some increase in the overall spread. Thus, the 119 

average distance from the ‘optimal point’ in the Taylor-diagram is growing in the future 120 

warming experiments. This suggests that the teleconnection pattern might change systematically 121 

in future.  122 

  123 
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Figure 1: Seasonal mean rainfall climatologies for the dry and wet season (derived from 132 

seasonal-mean station data averaged over years 1978-2007).Wet and dry season rainfall is the 133 

amount of rain falling in the months November-April and May-October, respectively. 134 

 135 

Figure 2: Geometric illustration of the effects of changes in the teleconnection pattern on the 136 

projection index used for precipitation downscaling. See text for details.  137 

 138 

 139 
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 140 

Figure 3: Taylor diagram for testing the stationarity assumption in the CMIP5 simulated 141 

teleconnection pattern between wet season rainfall in the geographic area over Hawaiʻi and 500 142 

hPa geopotential fields. Blue symbols show the comparison of 1955-1985, 1965-1995, and 1985-143 

2005 teleconnection pattern and the ‘present-day’ 1975-2005 reference teleconnection patttern. 144 

Orange and red symbols depict the comparison of the modeled future teleconnection pattern 145 

(years 2040-2070 and 2070-2099, respectively). Open circles represent the RCP4.5 scenario, 146 

traingles are the results from the RCP8.5 scenario. Note 24 of the models in Table 2 were used in 147 

this analysis. 148 

 149 

 150 
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