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Abstract  15 

Hawaii’s high and steep topography leads to pronounced small scale variations in climate 16 

and this makes comprehensive modeling of the weather and climate particularly challenging.  17 

This paper describes a regional model formulation designed for simulations of the microclimates 18 

in Hawaii, and then documents and analyzes an extended retrospective simulation for near 19 

present day conditions.  Part II will apply the model to projected climate conditions near the end 20 

of the present century.  21 

A nested version of the advanced Weather Research and Forecasting model with fine 22 

horizontal resolution and improved physics for the Hawaiian region has been configured.  A 20-23 

year triply-nested simulation of the atmospheric flow was undertaken with a 3-km resolution 24 

mesh covering all main Hawaiian Islands and a 1-km mesh over Maui. Ocean surface 25 

temperatures are prescribed from observations and meteorological fields at the boundaries of the 26 

outermost domain are taken from global reanalyses. The simulations are compared to surface, 27 

balloon and satellite observations over the same period. The 3-km version of the model 28 

simulates realistically the frequency of trade wind inversions, time-mean rainfall and other 29 

variables on relatively small scales over Hawaii Island. There is a reasonable agreement 30 

between observed and simulated mean rainfall patterns over the other islands as well. However, 31 

the simulated distribution of mean rainfall over Kauai and (most particularly) Maui and Oahu 32 

reveals some significant deficiencies which we attribute to inadequate resolution of the 33 

topography on these islands. The 1-km simulation over Maui shows clear improvement in the 34 

mean rainfall over the 3-km version.  35 

  36 
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1. Introduction 37 

The application of limited area dynamical atmospheric models to simulate fields at fine 38 

horizontal scales that are consistent with coarser scale global analyses or global general 39 

circulation model (GCM) simulations is being actively pursued for many geographical areas 40 

around the world (e.g., Laprise et al. 1998; Wang et al. 2004; Fu et al. 2005; Rummukainen 41 

2010; Mearns et al. 2012; Rasmussen et al. 2014; Mahoney et al. 2013).  Much of the current 42 

interest is motivated by the desire to provide local-scale climate change projections consistent 43 

with global coupled ocean-atmosphere model results (e.g., Mearns et al. 2012). This “dynamical 44 

downscaling” via regional comprehensive models is also potentially useful for seasonal climate 45 

prediction. In addition, retrospective simulations with limited area models forced by observed 46 

boundary conditions could find application in understanding and modeling the fine scale 47 

dependence of aspects of the local environment such as ground water availability, nutrient 48 

deposition to the soil, the ecology of plant communities, etc.  49 

Regularly gridded global reanalyses of the observed atmospheric fields are now produced 50 

by several major meteorological centers throughout the world, and generally such gridded fields 51 

are made available at ~50-300 km horizontal spacing. The ~50-300 km grid spacing is also 52 

typical of the global coupled models now being run for long term climate projections (e.g., 53 

Taylor et al. 2012). For many locations and particular applications, there is some interest in 54 

dynamically downscaled fields at even only moderately finer resolution.  For example, the US 55 

multiagency “North American Regional Climate Change Assessment Program” (NARCCAP) 56 

involves downscaling a large number of coupled global model projections for the North 57 

American region using several regional atmospheric models run at about 50 km horizontal 58 

resolution (Mearns et al. 2012). A somewhat similar program (referred to as USGS RegCLIM) 59 
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led by the US Geological Survey is producing downscaled climate projections for large parts of 60 

North America using a regional model with ~15 km horizontal resolution (Hostetler et al. 2011). 61 

While such dynamical downscaling datasets may be valuable for many regions, they would have 62 

very little applicability to the Hawaiian Islands where the unusual geography results in very fine 63 

scale microclimatic gradients.  64 

State-of-the-art global models with a horizontal resolution of ~100 km or coarser may 65 

represent all the Hawaiian Islands as just a handful of land grid-boxes. Without an adequate 66 

representation of the very high and steep topographic relief characteristic of Hawaii, such 67 

models cannot simulate even basic features of the winds, temperature and rainfall over the 68 

Hawaiian Islands. Notably, even a first-order representation of the observed intra-island 69 

geographical distribution of rainfall clearly requires using a model with much finer resolution 70 

than those now employed in the NARCCAP or USGS RegCLIM downscaling exercises.   71 

In their recent review, Harter et al. (2015) provide an overview on the impacts of global 72 

climate change on the flora of oceanic islands. Even though the authors emphasize the 73 

importance and the need for more and better climate data and models on the island scale, only 74 

very few studies applying very high resolution dynamical downscaling for the oceanic islands 75 

exist at present. Examples of such studies include, for instance, Morel et al. (2014) who 76 

documented the capabilities of the advanced Weather Research and Forecasting model (WRF, 77 

e.g., Skamarock et al. 2008) to simulate rainfall at very fine (680 m) spatial resolution over La 78 

Réunion. Similar to Hawaii, La Réunion is a small volcanic island with complex topography and 79 

a tropical maritime climate with two marked seasons. Pérez et al. (2014) evaluated the WRF 80 

parameterizations for dynamical downscaling in the Canary Islands with a horizontal resolution 81 

of up to 5 km. This study showed that specific model configurations were able to reproduce 82 
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observations of important variables in this archipelago reasonably well, demonstrating the 83 

potential for regional climate change simulations. Kendon et al. (2014) used a multiply-nested 84 

regional atmospheric model to downscale a global GCM climate simulation for a region in 85 

southern England and employed an inner grid with 1.5-km resolution. The application of very 86 

high resolution regional models has been reviewed recently by Prein et al. (2015).  87 

Zhang et al. (2012a; hereafter ZWLH) configured a nested version of the WRF model with 88 

both fine resolution (3 km) and improved physics appropriate for the Hawaiian region. We 89 

follow ZWLH and refer to this as the Hawaiian Regional Climate Model (HRCM). Configuring 90 

the HRCM involved several modifications of the publically available WRF versions. Notably 91 

the HRCM includes a version of the Tiedtke convection parameterization scheme implemented 92 

as described by Zhang et al. (2011), which has been made publicly available and is now part of 93 

the standard WRF since version 3.3. The HRCM was then further improved by including a 94 

modified cloud microphysics package and introducing a detailed specification of surface 95 

properties (albedo, land cover type, soil type, and green vegetation fraction) for the Hawaiian 96 

Islands (ZWLH). ZWLH discussed a one-year retrospective simulation (November 2005 to 97 

October 2006) in a doubly nested version at horizontal resolutions of 15 km and 3 km over the 98 

main Hawaiian Islands and the surrounding ocean region. This retrospective integration was 99 

driven with observed daily sea surface temperature (SST) and horizontal boundary fields taken 100 

from global meteorological reanalyses. Since then we have completed a 20-year retrospective 101 

simulation (1990–2009) and a 20-year simulation driven with projected future conditions 102 

representing the end of the current century (2080–2099). These new model integrations 103 

employed a triply-nested version of HRCM that included a 1-km grid mesh over the island of 104 

Maui and adjacent ocean regions.     105 
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The present paper is Part I of a two part series and reports on the 20-year retrospective 106 

simulation, while Part II will discuss the projected late 21st century climate change simulation.  107 

Part II will also discuss some of the specific motivations for producing fine resolution climate 108 

projections for Hawaii.  Note that the Pacific islands chapter of the U.S. National Climate 109 

Assessment provides an up to date review of many aspects of climate change impacts seen and 110 

anticipated in Hawaii (Leong et al. 2014).  111 

This first paper will demonstrate that the HRCM performs well enough in simulating 112 

present day microclimatic conditions that it can be applied reasonably in projecting the fine 113 

structure of climate changes on individual islands. An important aim of the present paper is to 114 

improve our knowledge of the advantages and limitations of high-resolution dynamical 115 

downscaling with a regional climate model applied to the Hawaiian Islands. Specifically, we (i) 116 

investigate the effect of improving the 3 km horizontal resolution employed by ZWLH and 117 

exploring the behavior of an atmospheric model in extended simulations at 1 km resolution; (ii) 118 

provide a 20-year simulation that allows more reliable statistics to be computed for comparisons 119 

with observations of various kinds, notably for rainfall, including its diurnal variation; (iii) 120 

evaluate how well the interannual variations in rainfall and other quantities over individual 121 

locations can be captured by a high resolution model forced by observed SSTs and large-scale 122 

boundary fields; and (iv) provide a first comparison of the regional geographical modulation of 123 

the boundary layer structure simulated in a high-resolution model with that derived recently 124 

from satellite radio occultation data (Zhang et al. 2012b).    125 

The paper is organized as follows. Section 2 briefly outlines some dominant features of the 126 

present day atmospheric circulation and climate for Hawaii. Section 3 describes the 127 

observational datasets that we have used for evaluating the model results and briefly 128 
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summarizes the basic HRCM description from ZWLH and lays out the details of the 129 

configuration adopted for the present simulation. Sections 4 and 5 describe aspects of the 130 

simulation in the HRCM outermost and intermediate domains, respectively. Section 6 examines 131 

the simulation over Maui in the 1-km resolution innermost domain. Results are discussed and 132 

conclusions are summarized in Section 7. 133 

2. Meteorological background  134 

The atmospheric general circulation sets the stage for any study of Hawaii climate.  Much 135 

of the subtropics and adjacent tropical regions are dominated by mean sinking motion through 136 

the troposphere. Over the continents this leads to the familiar subtropical deserts, while over 137 

much of the tropical and subtropical oceans the large scale circulation establishes a regime 138 

typified by a well-mixed marine boundary layer (MBL) capped by a temperature inversion layer. 139 

Around Hawaii over 80% of atmospheric soundings can be characterized as having well defined 140 

trade wind inversions (TWIs) which cap the MBL at heights ranging from 1000 to 4000 m 141 

above sea level (Cao et al. 2007).  Typically the TWI layer is about 300 m thick and the relative 142 

humidity drops by ~40% across this layer (Cao et al. 2007).  The prevailing surface winds in 143 

Hawaii are from the east-northeast and, generally speaking, days with a well-defined TWI also 144 

tend to have surface winds with an easterly component.   145 

For the characterization of Hawaii climate it is useful to divide the year into the cooler, 146 

rainier half (“winter”, which we define throughout this paper as November through April) and 147 

the warmer, drier half (“summer”, May through October). Rainfall directly over the main 148 

Hawaiian Islands is generally heavier than over adjacent ocean areas due to the strong 149 

interaction between the topography and boundary layer flow (e.g., Schroeder 1993). During the 150 

dominant trade wind weather patterns generally there is abundant orographic rain along the 151 
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northeastward facing slopes and very pronounced rain shadows over most of the “leeward” (i.e. 152 

leeward relative to the mean trade winds) sides of the islands (Lyons 1982). Under the usual 153 

TWI conditions there is rarely much deep convective rain over the islands.  However, deep 154 

convection can occur when the usual TWI pattern is absent. Each winter (and occasionally in 155 

summer), the trade wind weather is disrupted several times by spells of more disturbed weather, 156 

notably frontal passages or other effects associated with cyclones centered at higher latitudes. 157 

On occasion the usual circulation pattern right around Hawaii is strongly perturbed by slowly-158 

moving, closed low pressure circulations (so-called “Kona lows”), which may persist in the 159 

vicinity for several days or even longer. These disturbed conditions lead to days without clearly-160 

defined TWI and often feature convective rain. These non-TWI, convective rain events account 161 

for much of the total rainfall that falls on the normally dry leeward areas in the islands. In 162 

summer, tropical depressions and tropical cyclones can lead to very heavy rainfall events, but 163 

the close encounter of such tropical disturbances with the main Hawaiian Islands is relatively 164 

infrequent (Chu and Clark 1999). Figure 1a shows schematically some of the key processes 165 

governing the rainfall in Hawaii. 166 

3. Observations and model description 167 

In this section, we first describe the data employed to evaluate the model simulation 168 

including in-situ and remote sensing observations as well as gridded analyses derived from 169 

observations, and then present the model integration performed. 170 

a. Balloon soundings 171 

For the entire 1990-2009 period the National Weather Service conducted twice-daily 172 

operational balloon soundings near the eastern and western extremes of the main Hawaiian 173 
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Islands, namely at Hilo airport on Hawaii Island (which we will refer to here as the “Big Island”) 174 

and at Lihue Airport on Kauai (Fig. 1b). The soundings include air temperature, humidity and 175 

wind speed. Typically there are around 35 levels with data reported below 600 hPa with the 176 

density of reports enhanced through the inversion layer itself. The data are available at 177 

http://weather.uwyo.edu/upperair/sounding.html.   178 

b. Surface observations 179 

There are several surface weather stations at airports (METAR stations) throughout the 180 

islands. We will focus on the detailed observations from METAR stations on each of the four 181 

largest islands: Lihue on Kauai, Honolulu on Oahu, Kahului on Maui, and Hilo on the Big 182 

Island (see Fig. 1b and the stations denoted by bold type in Table 1). Hourly observations of 183 

several variables are taken at each of these stations and the data are available online from the US 184 

National Centers for Environmental Information (NCEI) website https://www.ncei.noaa.gov. 185 

For comparisons with the model results we will use the station observations of surface air 186 

temperature (SAT), surface wind, rainfall and surface specific humidity. The surface wind 187 

reported in the METAR data is a 2-minute average of the wind at 10-m height above ground 188 

(www.nws.noaa.gov/om/tpb/474body.htm). The hourly METAR data are used to construct daily 189 

and monthly means. 190 

In addition to the METAR stations, NCEI records daily observations from over 50 191 

cooperative weather stations in the main Hawaiian Islands (http://www.prh.noaa.gov/data 192 

/HFO/RRMHFO). We used the SAT data (as monthly means reported by the NCEI) from each 193 

of the 43 stations for which monthly SAT means were reported for at least 50% of the months 194 

during 1990-2009. We also included SAT observations from an additional station at the summit 195 

of Mauna Kea on the Big Island that are reported by the Mauna Kea Weather Center 196 
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(http://mkwc.ifa.hawaii.edu/archive/index.cgi). The network of stations is shown in Fig. 11a and 197 

details are given in Table 1. 198 

Rainfall amounts are known to exhibit very sharp horizontal contrasts in Hawaii and so 199 

characterizing the observed rainfall climatology from observations is challenging. The Rainfall 200 

Atlas of Hawaii project (Giambelluca et al. 2013; Frazier et al. 2015) has tried to compile all 201 

available rainfall observations and interpolate them to produce observed monthly-mean rainfall 202 

rates at a nominal 250-m resolution over the Hawaiian Islands. The number of rain gauge 203 

stations available generally declines over the years but in 2012, for example, monthly data at 204 

404 stations (maintained by various organizations) were available. Frazier et al. (2015) discuss 205 

results from different kriging approaches for their interpolation using topographic height as a 206 

secondary variable. They selected what they judged as the best approach to produce the monthly 207 

gridded values that are available at http://rainfall.geography.hawaii.edu (where maps of the 208 

station locations can also be found). For our project we aggregated the 250-m observed data to 209 

the HRCM 3 km and 1 km grids implemented by using the ‘patch’ interpolation in NCAR 210 

Command Language (https://www.ncl.ucar.edu). 211 

The Rainfall Atlas does not include hourly data but we will compare the observed and 212 

modeled diurnal cycle of rainfall. For this we use hourly rain gauge measurements from the 213 

NCEI hourly precipitation dataset and also from the National Weather Service Hydronet which 214 

has been recording 15-minute rainfall amounts at stations in Hawaii since 1995 215 

(http://www.prh.noaa.gov/hnl/hydro/hydronet/hydronet-data.php). After a data consistency and 216 

quality check, we chose 109 stations from the NCEI dataset from 1995 to 2009. During the same 217 

time period, there are 64 Hydronet stations available. We performed a Cressman interpolation 218 

(Cressman 1959) of the hourly precipitation data onto the Domain 2 3-km grids (following 219 
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ZWLH). The observed hourly data used are all from 1995-2009; the comparisons presented later 220 

concerning the diurnal cycle of rainfall are computed using the model integration for the same 221 

15-year period. As an aside, we evaluated our simple Cressman interpolation by comparing our 222 

interpolated long term mean rainfall with the more sophisticated results of Frazier et al. (2015) 223 

and found generally only small differences.  224 

c. Satellite observations 225 

The MBL structure is measured in situ only by the operational balloon soundings at Hilo 226 

and Lihue (see Section 3a above), but Zhang et al. (2012b) reported on the use of satellite 227 

remote sensing data in determining the TWI base heights above sea level (TWIBH) in the 228 

Hawaiian region. The moisture and temperature gradient across the base of the TWI layer 229 

results in a sharp radio refractivity gradient that can be detected by the Global Positioning 230 

System (GPS) radio occultation (RO) measurements (e.g., Sokolovskiy et al. 2006; Guo et al. 231 

2011; Xie et al. 2012). Zhang et al. (2012b) employed an algorithm to identify the TWIBH from 232 

RO soundings (following the method of Guo et al. 2011) and then constructed a climatological 233 

map of mean TWIBH for the Hawaiian Region interpolated from all the individual observations 234 

from June 2006 to December 2010. Note that the interpolated TWIBH is smoothed to an 235 

effective horizontal resolution of ~25 km (this is a particular limitation in representing the 236 

inversion base heights over the mountain peaks on Hawaii Island).  237 

The Global Precipitation Climatology Project (GPCP) monthly precipitation dataset version 238 

2.2 is used to evaluate the precipitation in the outermost domain of the HRCM. This dataset 239 

consists of monthly means of precipitation derived from satellite and rain gauge measurements 240 

(Adler et al. 2003), and is available at 2.5 degree latitude-longitude resolution. We also 241 

employed the monthly mean gridded Tropical Rainfall Measurement Mission (TRMM) 242 
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precipitation 3B43 product with 0.25 degree resolution based on TRMM and other satellite 243 

observations for the time period 1998-2009 (Huffman et al. 2007).  244 

d. Model and integration 245 

A more detailed description of the HRCM can be found in ZWLH. The grid configuration 246 

used in the present study is shown in Fig. 1. The model uses “one way nesting” and Domains 1, 247 

2 and 3 are integrated with 15, 3, 1 km grids on a Mercator projection. The outer 15 grid points 248 

in Domain 1 are used as a buffer zone in which the results are relaxed to values interpolated in 249 

time and space from the 6-hour snapshots provided by the NASA MERRA reanalyses 250 

(Rienecker et al. 2011). The SST is prescribed and updated daily using the 0.25°×0.25° NOAA 251 

global analysis described by Reynolds et al. (2010, see ZWLH for our treatment of the diurnal 252 

variability of the SST). The model integrations started at UTC 00 Jan 01 1990 and ended on 253 

UTC 00 Jan 01 2010. We analyze the whole record without discarding a “spin-up” period, since 254 

the initial soil moisture and temperature are not crucial to the model performance over the 255 

Hawaiian Islands. The model runs in Domains 1, 2 and 3 were performed with time steps of 75, 256 

15 and 5 seconds, respectively. The soil moisture and soil temperature at the initial time are 257 

taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis 258 

Interim data with a resolution of 0.75°×0.75° (Dee et al. 2011). The initial conditions for the 259 

atmosphere were interpolated from the MERRA global reanalyses (0.5°×0.67°).  260 

Practical constraints limited us to a single realization of the 20-year period simulated. In 261 

fact we can expect this integration to be impacted by random high-frequency internal variability 262 

as well as variations under the control of the imposed observed SSTs and lateral boundary 263 

conditions (e.g., Cretat et al. 2011). We cannot expect the observed day-to-day evolution of the 264 

weather, particularly at small spatial scales, to be reproduced, but, in principle, the seasonal and 265 
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longer scale interannual variations may be reasonably captured in a single model realization if 266 

the control by imposed boundary forcing is sufficiently strong. At least it is meaningful to ask if 267 

the model does simulate the interannual variations of the local climate. We show in Section 5 268 

that the model does indeed do a reasonable job in simulating the interannual variability on 269 

seasonal time-scales. 270 

4. Outermost domain simulation 271 

Figure 2 compares our simulated 20-year mean precipitation in Domain 1 with GPCP 272 

observations for the same period. In winter, the domain-averaged precipitation is 2.81 mm day-1, 273 

which is smaller than 3.30 mm day-1 indicated by GPCP (Figs. 2a, b). The spatial correlation 274 

(SC) between the simulation and GPCP observations computed on the 15 km Domain 1 grid is 275 

0.94. In summer (Figs. 2c, d) the domain-averaged simulated precipitation is 2.56 mm day-1, by 276 

about 6.5% smaller than the value computed from the GPCP data (2.74 mm day-1). The SC 277 

between the simulation and GPCP observations is 0.96. In both seasons the simulated mean 278 

precipitation rate is larger than that observed in the ITCZ and less than that observed near, and 279 

to the east of, the Hawaiian Islands. Figure 2e shows the monthly time series of domain-280 

averaged precipitation in the HRCM simulation compared with those computed from the GPCP 281 

and TRMM rainfall datasets. The main features of the annual cycle as well as the most 282 

prominent observed interannual variations (notably over 1997-1998) are reasonably well 283 

simulated by the HRCM. 284 

Figure 3 shows the biases in 20-year means of simulated 500 hPa geopotential height 285 

(GHT500) and sea level pressure (SLP) compared with MERRA reanalyses for the same period. 286 

The biases are quite small (between -0.2 and 1.0 hPa in SLP and between -15 and 15 m in 287 

GHT500) and exhibit only very large-scale gradients (except for the region over the islands 288 



13 
 

where the noisy looking results presumably reflect differences in topography and the vertical 289 

interpolation/extrapolation between the model and MERRA values). The rather good simulation 290 

documented in Figs. 2 and 3 suggests that the regional model with realistic boundary forcing 291 

and prescribed SSTs can produce a reasonable representation of the regional-scale fields, even 292 

without interior large-scale nudging of model fields as has been done in many other regional 293 

climate simulations (e.g., Miguez-Macho et al. 2004; Castro et al. 2005; Lo et al. 2008; 294 

Alexandru et al. 2009; Bowden et al. 2012). 295 

5. Intermediate (3 km) domain simulation 296 

a. Comparison with METAR station observations 297 

The probability density functions (PDFs) of daily mean SAT, daily maximum SAT, daily 298 

minimum SAT, daily mean surface specific humidity (Q2), daily mean surface wind speed and 299 

daily rainfall were computed over all days during 1990-2009 from the METAR station data and 300 

from the HRCM simulation results at the nearest land grid points to the station locations. The 301 

results are shown in Fig. 4 together with the 20-year mean biases (HRCM simulation minus 302 

observations). Overall the PDFs in the HRCM simulation and observations are quite similar. 303 

The mean SAT biases are less than 0.7°C at all stations. The daily maximum and minimum SAT 304 

biases are slightly larger and are in the range of 0.06 to 1.84°C. The bias in humidity at both 305 

Lihue and Honolulu is quite small and the simulated PDFs at these stations are similar to the 306 

observed. The simulated Q2 has a dry bias of ~2 g kg-1 at both Kahului and Hilo. The HRCM 307 

simulation has surface wind speed bias of 1.59 m s-1 at Kahului, 0.43 m s-1 at Honolulu, and 308 

even smaller biases at Hilo and Lihue. 309 

The largest mean rainfall bias in the HRCM simulation among the stations is -0.49 mm day-310 
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1 for Lihue. The observed distribution of daily rainfall total at each of the stations is rather well 311 

captured in the HRCM simulation. The main disagreement is for light rainfall (1-5 mm day-1) 312 

days which are less frequent at Lihue and Kahului in the simulation than in the observations.  313 

The long-term mean seasonal cycle in surface variables is presented as the 20-year means 314 

for each calendar month for the same variables (Fig. 5) at the same locations as in Fig. 4. 315 

Correlation coefficients of the 12 observed and simulated values for each quantity are also 316 

shown in Fig. 5. In each case the seasonal cycle of these surface variables is quite well 317 

simulated (with very high correlation coefficients), and even some of the finer details of the 318 

observed seasonal cycle (e.g., the May minimum in wind speed at Lihue, Honolulu and Kahului) 319 

are captured. The biases in the long-term mean seen earlier in Fig. 4 are apparent here in Fig. 5 320 

as well, but the seasonal dependence of these biases is generally modest. Perhaps the most 321 

notable systematic seasonal modulation of the model bias is in the SAT at Lihue, Honolulu and 322 

Kahului where there is a larger warm bias in summer than in winter. 323 

The interannual fluctuations of the surface atmospheric fields are shown as time series from 324 

which the long-term mean seasonal cycle has been removed, but in which the long-term annual 325 

mean is retained (Fig. 6). Specifically presented in Fig. 6 are 6-month running means of the 326 

deseasonalized SAT, wind speed, and rainfall at the four stations. These are compared with the 327 

HRCM simulated values at the nearest land grid points. It is noteworthy that the year-to-year 328 

fluctuations in all fields at all stations appear to dominate any persistent linear trends, with the 329 

exception of surface wind speed at Hilo (discussed further below). 330 

The correlation coefficients between these smoothed and deseasonalized SAT time series 331 

from HRCM simulation and observations are over 0.9 for all four stations, and the root mean 332 

square differences (RMS) between the series are less than 0.75°C. The HRCM simulated 333 
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interannual variations in wind speed appear to be reasonable at Lihue, Honolulu and Kahului 334 

(with temporal correlation coefficients of 0.78-0.87) but the result at Hilo is quite anomalous.  335 

The observed record shows a strong trend over the 20-year period of decreasing wind speed 336 

which is completely absent in the model simulation. We do not have an explanation for this 337 

result and speculate that the cause may be inhomogeneity in the observed record, noting that the 338 

decrease in the observed wind speed takes place mainly in two steps around 1993 and 2002. 339 

The right column of Fig. 6 compares the interannual fluctuations of rainfall simulated by 340 

the HRCM with the METAR station observations. Overall the model captures most of the 341 

largest fluctuations, notably the wet period around 1995-97 at Lihue, Honolulu and Kahului, and 342 

the very dry conditions around 1998-2000 at all four stations. At each station there are also 343 

some periods of 6-12 months of significant disagreement particularly in the years since 2004. 344 

The correlation coefficients between the observed and modeled values range from 0.45 to 0.68. 345 

b. Rainfall comparisons with gridded analyses- geographical distribution 346 

Figure 7 compares the 20-year mean rainfall over the Hawaiian Islands in the simulation 347 

with that in the gridded observational data described in Section 3 for the annual mean, and the 348 

summer and winter halves of the year. Promisingly, the model captures all the main qualitative 349 

features seen in the complicated rainfall patterns on each of the islands. Specifically one can 350 

identify in both observations and model simulation the following features: rainy windward 351 

slopes on all islands, the generally dry leeward rain shadow areas, the very wet summit on Kauai, 352 

and the two very dry summits on the Big Island (Mauna Kea and Mauna Loa). In both 353 

observations and model simulation the long-term mean daily rainfall exceeds 20 mm at some 354 

points on the windward sides of east Maui and the Big Island. The spatial correlation coefficient 355 

between the gridded observations and model simulation of long-term mean rainfall evaluated on 356 
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the 3 km grid over all the land areas in Hawaii was 0.83 for the annual mean, and 0.84 and 0.79 357 

for winter and summer, respectively. The 20-year annual-mean rainfall rate for the land areas of 358 

all the Hawaiian Islands is 4.54 mm day-1 in the gridded observations and slightly lower (4.49 359 

mm day-1) in the HRCM simulation. Compared with the observational analysis, the model mean 360 

rainfall over land areas has an overall wet bias of 6% in winter and a dry bias of 12% in summer. 361 

While the pattern of overall geographical variation in the climatological rainfall looks 362 

reasonable in the model, many particular details are not very well simulated. Some of the most 363 

obvious problems occur over Oahu and Maui. The rainfall maximum along the mountains 364 

stretching along the east coast of Oahu is too weak in the model. On west Maui the HRCM 365 

reproduces the rainfall maximum near the topographic summit, but the rainfall rate there is 366 

underestimated by ~5 mm day-1 (i.e. by ~40% of the mean observed value). The observed mean 367 

rainfall on east Maui has a maximum along the topographic slopes facing northeastward and the 368 

area around the summit of Mt. Haleakala is quite dry. In the model simulation the rainfall 369 

maximum on east Maui is concentrated on the east end and the southeast-northwest oriented rain 370 

maximum along the northeast facing slope in the observations is absent. The heavy rainfall 371 

region in the model also penetrates rather close to the mountain summit. These deficiencies over 372 

Oahu and Maui have a clear signature in the bias maps (Figs. 7c, f, i) and the pattern of the 373 

biases over those islands is similar in winter and summer. The major topographic features on 374 

both Oahu and Maui exhibit steep slopes and small horizontal scales. The mountains along the 375 

east coast of Oahu are particularly narrow and are significantly smoothed and biased low in the 376 

3 km representation. Given that most of the rainfall here is due to topographic interaction with 377 

the atmospheric low-level flow, it is not surprising that the model underestimates rainfall along 378 

the mountain range. On Maui, as well, the topographic slopes on the mountains in both east 379 
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Maui (Mt. Haleakala) and west Maui are large and the 3 km version of the Maui orography is 380 

also considerably smoothed. We have addressed this issue explicitly for Maui with our 1 km 381 

“innermost domain” simulation which we will discuss in Section 6 below. 382 

On the Big Island the pattern of wet and dry areas is well captured in the model simulation. 383 

The model produces a long, narrow maximum in mean rainfall along the west coast of the Big 384 

Island corresponding to that observed, but centered slightly more inland (Figs. 7b, e, h). The 385 

biggest bias in the simulated mean rainfall on the Big Island evident in Fig. 7 is an 386 

overestimation of rainfall along the main topographic slope on the east part of the island, 387 

particularly in winter. In winter this bias is as high as ~8 mm day-1 representing a ~40% 388 

overestimation of local rainfall. The topography on the Big Island is smoother than on the other 389 

major Hawaiian Islands so, in contrast to the case for Oahu and Maui, we expect that the 390 

resolution of the topography in the 3 km domain is not a major factor in the model bias but the 391 

advection scheme for water vapor might play an important role, which will be a topic for a 392 

future work. 393 

Overall we regard the mean rainfall simulation as successful, but there are model biases at 394 

many individual locations that are as much as ~30-40% relative to the Hawaiian rainfall 395 

observations and at some exceptional locations, such as the summit of Mt. Haleakala on Maui, 396 

can be even larger. 397 

c. Rainfall comparisons with gridded analyses - Interannual variations 398 

Figure 8 presents the individual island mean rainfall values shown as time series from 399 

which the long-term mean seasonal cycle has been removed, but with the long-term annual 400 

mean retained as in Fig. 6. Results shown have been smoothed with a 6-month running mean, 401 

and values for the observations and the HRCM simulation are compared. Just as we saw for 402 
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individual station rainfall observations (Fig. 6), the linear trends are small relative to the other 403 

year-to-year variations apparent. The model simulation reproduces the main wet and dry periods 404 

seen in the observations. Overall the agreement between the model simulation and observations 405 

appears much better for these island-averages (correlation coefficients of 0.66-0.73) than for the 406 

individual station values in Fig. 6 (correlation coefficients of 0.45-0.68). 407 

Also shown by the black curves in Fig. 8 are estimates of the “local SST” around each 408 

island [average of the Reynolds et al. (2010) satellite SST analyses over a 2.5°×2.5° box 409 

centered on each of Kauai, Oahu and Maui and over a 4°×4° box around the Big Island. A map 410 

of the 20-year trend in observed SSTs is shown in Appendix A]. The local SST appears to have 411 

a modest positive correlation with the rainfall over Kauai and Oahu. However, the correlation 412 

between SST and island-mean rainfall is very weak for Maui and the Big Island. In general the 413 

SST changes are slower than the high-frequency variations in rainfall evident even in the 6-414 

month smoothed curves in Fig. 8.  415 

d. Diurnal rainfall variation  416 

The average rainfall in Hawaii exhibits significant diurnal variations which have been 417 

documented in many earlier observational studies (e.g., Schroeder et al. 1977; Chen and Nash 418 

1994; Sen Roy and Balling 2004; Hartley and Chen 2010). The diurnal variations themselves 419 

have a complicated geographical dependence presumably related to the topography on each 420 

island. As noted in Section 3b, we have interpolated the hourly rainfall observations archived at 421 

NCEI and at Hydronet stations for 1995-2009 onto the 3 km grid, from which 15-year mean 422 

statistics were computed. Figure 9a presents maps of the local time at which the diurnal cycle of 423 

mean rainfall amount peaks. Figure 9c shows the same quantity for the diurnal cycle of rainfall 424 

frequency. Figures 9b, d present comparable values computed from the same 15 years of the 425 
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HRCM simulation. Note that the observations are plotted only over land, while we show model 426 

results also over adjacent ocean regions. The peak time is calculated by fitting a 24-hour sine 427 

wave to the long-term means calculated for each hour of the day. The results for mean rainfall 428 

peak and maximum frequency of rainfall are rather similar (compare Figs. 9a and 9c, or Figs. 9b 429 

and 9d).  Within each major island there are very significant geographical variations in the phase 430 

of the diurnal cycle. There is an overall pattern of early morning peaks (2-6 hours local time - 431 

LT) over the windward sides and afternoon peaks (12-15 hours LT) on the leeward sides. This 432 

pattern is evident on east Maui, Oahu and Kauai, and even on the rather small island of Molokai. 433 

The diurnal rainfall cycle on the Big Island displays even more intricate geographical 434 

dependence with a transition from early morning (2-4 hours LT) at the extreme eastern end to 435 

late evening (18-22 hours LT) in a substantial band over much of the eastern 1/3 of the island. 436 

Most of the western 2/3 of the island has mid-to-late afternoon peaks (14-18 hours LT) with a 437 

region of near midnight peaks on the northern tip of the island. 438 

The HRCM simulation also shows large variations in diurnal phase within each island. The 439 

overall agreement of the simulated patterns with observations is reasonably good, although the 440 

model simulation and observations differ in many details. The most notable biases in the HRCM 441 

simulation are on the windward sides of Oahu and Kauai where the amount and frequency peaks 442 

are around 3 hours later than indicated in the rain gauge observations. Estimates of the 443 

amplitude of the climatological diurnal cycle in rainfall (not shown) are also fairly similar in the 444 

observational analysis and in the HRCM simulation.   445 

e. Trade wind inversion climatology 446 

The red curves in Figs. 10c, d show the 20-year time series of monthly means of the 447 

TWIBH at Lihue and Hilo computed from the twice-daily balloon soundings at each station. 448 
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These monthly averages are computed only using soundings with a well-defined TWI. Details of 449 

the definition of TWI and TWIBH we employed are given in Zhang et al. (2012b). The same 450 

definitions were used to determine the mean TWIBH in the HRCM simulation and Figs. 10c, d 451 

compare the observed (balloon radiosonde) TWIBH and that from the HRCM simulation at the 452 

grid points nearest to Lihue and Hilo. The annual and interannual variations in the TWIBH at 453 

both stations are simulated reasonably well (with correlation coefficients of 0.71 and 0.74), but 454 

the model has a rather persistent low bias of ~100 m. 455 

As discussed earlier in Section 3, Zhang et al. (2012b) also estimated TWIBH from satellite 456 

radio occultation measurements, which provide the opportunity to evaluate the geographical 457 

variations of TWIBH in the model simulation. Figure 10a shows our estimated TWIBH based 458 

on these satellite radio occultation observations. This exercise is limited by the relatively few 459 

soundings available (see Fig. 10a) and the limited period (2006-2010) covered. The contour map 460 

is drawn using an interpolation that lumped together all the data over this period and can be 461 

regarded as an estimate of the long-term annual-mean TWIBH (see Zhang et al. 2012b). A 462 

comparable long-term mean TWIBH was also computed from the HRCM simulation (Fig. 10b). 463 

Note that the model results have been smoothed horizontally to ~25 km resolution to make them 464 

somewhat comparable to the observations in equivalent resolution. This explains why the model 465 

mean TWIBH shown is only about 2-2.5 km above sea level in areas on the Big Island and Maui 466 

where topographic heights are actually higher. 467 

The overall low bias of ~100 m noted earlier in the model TWIBH is evident, but the model 468 

simulation does capture the overall geographical structure of the TWI around Hawaii that is 469 

apparent in observations. Notably the TWIBH is highest near the major islands and is lower on 470 

either side, especially in a “bowl” of radius ~100 km, centered near 20oN and 157oW (i.e. 471 
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southwest of Oahu and Maui, west of the Big Island).   472 

f. Comparisons with SAT station data 473 

The fact that the HRCM is able to simulate SAT at the METAR stations with biases less 474 

than 1°C (Figs. 4, 5, 6) may not be surprising, given that the stations are all near the coast and 475 

observed SSTs are prescribed in the model simulation. Here we evaluate the HRCM simulation 476 

using the larger database of SAT observations from 44 stations (mainly NOAA cooperative 477 

stations) described in Section 3b. This network of stations is shown in Fig. 11a and includes 478 

several inland and high altitude locations. 479 

Figure 11a presents the 20-year mean bias of the model simulated SAT relative to each 480 

station’s observations. To produce this comparison we interpolated the HRCM grid values onto 481 

the exact station locations by a bilinear interpolation method. The SAT biases over low terrain 482 

areas are typically less than 1°C (box 1 in Fig. 11b). However, the biases are larger (1-3°C) over 483 

high-elevation areas (Fig. 11b). We then computed a correction based on the differences in 484 

elevation between the interpolated model topography and the actual height above sea level at the 485 

station locations. The differences in elevation at most stations are less than 100 m, and the 486 

largest bias is at the Mauna Kea summit (elevation 4205 m), where the terrain height in the 487 

model is about 350 m lower than the actual terrain height (Table 1). The simulated SAT can be 488 

adjusted to the real station height by assuming a lapse rate of 6.5°C km-1 (Table 1). After 489 

applying this correction the SAT bias at the summit of Mauna Kea goes down from 1.7°C to -490 

0.5°C. Overall 50% of 44 stations show a smaller SAT bias after this correction, while 34% of 491 

the stations have larger SAT biases. At some stations in box 2 of Fig. 11b (e.g., Kulani Camp 79, 492 

Volcano Park HQ 54 and Glenwood Number 2), the negative SAT biases are larger after the 493 

elevation correction due to the lower model topography height compared to the real height. 494 
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There is still a 2.2°C bias at Haleakala Ranger Station 338 after applying a 1.1°C adjustment. 495 

Figure 11b shows liquid water path (LWP) versus elevation for the surface stations investigated 496 

here. Since clouds in Hawaii are typically low clouds (cloud tops below 2.5 km) there is often 497 

no ice or mixed phase. The LWP is therefore closely related to the cloud amount and is used 498 

here in combination with the elevation of a station to determine whether the station is in the 499 

cloud zone in the model (“Box 2” in Fig. 11b) or not (“Box 1”). To explain why all the four 500 

windward cloud zone stations have relatively large negative SAT biases, we compared the 501 

simulated 20-year net radiation climatology to the retrieved net radiation at the surface by 502 

Giambelluca et al. (2014) for the Hawaiian Islands (Fig. 12). The retrieved net radiation is 503 

between 80-120 W m-2, while the simulated net radiation is between 50-110 W m-2 over the 504 

windward sides of the island of Hawaii and Maui (Figs. 12a, b). The total cloud fraction (TCF) 505 

and liquid water path are both important factors controlling the net radiation at the surface. 506 

There is a slightly higher TCF in the model simulation compared with the TCF retrieved from 507 

satellite observations over the windward sides of the islands of Hawaii and Maui (Figs. 12c, d). 508 

The overestimated TCF is likely contributing to the negative bias of the net surface radiation in 509 

the model. Unfortunately there are no high resolution LWP observations over Hawaii to 510 

evaluate the modeled LWP.  511 

6. Innermost domain (1 km) simulation over the Island of Maui 512 

As noted above it seems plausible to attribute much of the deficiencies in the mean rainfall 513 

simulation over Oahu and Maui in our intermediate (3 km) domain to the overly smoothed 514 

representation of the topography on these islands. We therefore included a 1-km resolution 515 

nested innermost domain around Maui in our simulation (Fig. 1). The observed long-term mean 516 

rainfall on Maui (Fig. 13a) shows a very uneven distribution and sharp horizontal gradients. 517 
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Mean rainfall exceeds 20 mm day-1 at some places on the windward side of Mt. Haleakala in 518 

east Maui and near the summit of the mountains in west Maui, but is an order of magnitude less 519 

over much of the central parts of the island. The sharp gradients presumably result from 520 

interactions of the low-level wind with the Maui’s steep topography.   521 

Figure 13c shows the 20-year annual-mean rainfall from the intermediate domain (3 km) 522 

simulation (i.e. just a detail from Fig. 7b). The deficiencies noted earlier in Section 5 are 523 

apparent, notably the rainfall maximum on the eastern side of east Maui is oriented east-west in 524 

the simulation rather than southwest-northwest as in the observations. The high rainfall axis 525 

penetrates too close to the summit of Mt. Haleakala (elevation 3055 m) which in observations is 526 

quite dry. The numbers on Fig. 13a show the locations of NCEI stations from which rainfall data 527 

are available (note that this is only a fraction of all rainfall stations used to create the gridded 528 

dataset used to produce Fig. 13a). Table 2 shows the observed long-term mean rainfall rate at 529 

each station and the simulated values in the 3-km and 1-km domains of the HRCM. On west 530 

Maui the model correctly simulates a rainfall maximum near the highest topography, but the 531 

peak rainfall there is underpredicted by ~50%.  532 

Figure 13b shows the simulated mean rainfall rates in the 1-km resolution domain 533 

simulation. The great improvement in the pattern of rainfall compared with the simulation in the 534 

3-km resolution domain is evident. The results for the individual NCEI stations in Table 2 are 535 

almost all improved substantially in the 1-km simulation. Notably at station #1 the bias of more 536 

than 300% in the 3-km simulation is reduced to 33% in the 1-km resolution simulation.   537 

7.  Discussion and conclusions 538 

We integrated a triply-nested version of the HRCM for 20 years which was forced by global 539 

reanalysis data and observed SSTs. The horizontal resolution is 15 km over an extensive ocean 540 
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area in the central equatorial and North Pacific, 3 km for the Hawaiian Islands and adjacent 541 

oceans, and 1 km for the island of Maui and surroundings. The basic features of the regional 542 

scale climatology simulated in the HRCM outermost domain including the mean location of the 543 

ITCZ and long-term mean SLP patterns are reasonably well reproduced by the model. 544 

The intermediate 3-km resolution domain results were compared with a wide variety of 545 

local station and other high-resolution observations in order to evaluate how well the HRCM 546 

can simulate the fine structure of Hawaiian microclimates. Near the coasts, the model long-term 547 

mean SAT biases relative to station observations are almost everywhere less than 1°C - 548 

agreement which presumably is largely ordained by the prescription of observed SSTs in the 549 

adjacent ocean regions. At inland locations the model simulated SAT is less directly constrained 550 

by the SSTs and model biases in SAT in the 1-2°C range are common at many locations and the 551 

bias exceeds 3°C at one station (Fig. 11). The simulated long-term mean rainfall was compared 552 

with observations at some individual stations and with a gridded analysis over all land areas 553 

derived from a sophisticated optimal interpolation of several hundred station observations. The 554 

overall geographical and seasonal patterns of rainfall over the islands are captured reasonably 555 

well in the HRCM simulation. The spatial correlation coefficient between interpolated 556 

observations and model simulation of long term mean rainfall evaluated on 3 km grids over all 557 

the land areas in Hawaii was 0.79-0.84 depending on the season considered. However, we find 558 

model biases at individual locations that are ~30-40% relative to the interpolated observations. 559 

Overall, the HRCM biases in simulated climatological SAT and rainfall at individual locations 560 

over the Hawaiian Islands seem fairly modest. 561 

More detailed analysis of rain gauge data and model output showed that the HRCM 562 

simulates a quite realistic diurnal cycle of rainfall. This result is gratifying as this aspect of the 563 
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circulation is generated internally within the model and is not strongly controlled by the 564 

prescribed boundary conditions. 565 

We used objective criteria to classify any observed or simulated atmospheric sounding as 566 

representing typical TWI conditions or not, and found a TWI frequency of about 80% in both 567 

observations and the model simulation. The TWI periods of the record were analyzed to create 568 

the climatology of TWI height in the model which was compared to TWI statistics from balloon 569 

soundings and GPS satellite profiles. While there is basic agreement in the geographical and 570 

seasonal variations of the mean TWI in the observations and model simulation, the HRCM does 571 

display a fairly consistent low bias of ~100 m in the TWIBH.    572 

We also analyzed aspects of the interannual variations in the simulated rainfall, SAT and 573 

surface wind speed. The overall strength of interannual fluctuations in rainfall is reasonably well 574 

captured in the simulations. The detailed time series of the modeled rainfall, SAT and surface 575 

wind speed over the 20 year period are reasonably close to observations (Figs. 6 and 8). The 576 

most striking feature of the observed rainfall records, namely the heavy rain in 1995-96 577 

followed by a protracted period of below-average rainfall until 2001, is reproduced to some 578 

extent in the HRCM simulation. The observed time series over the period showed significant 579 

variability on a range of time-scales and in none of the records did consistent long-term trends 580 

appear to be the dominant contribution to interannual variability. Nonetheless we did examine 581 

the 20-year linear trends in the observed and simulated SAT and rainfall fields and found some 582 

degree of agreement. Any 20 year trends in regional atmospheric conditions would be forced 583 

primarily by the 20 year trends in SST in the Pacific basin, and those SST trends are up to 584 

~0.1°C yr-1 locally and have substantial geographical structure. These 20-year SST trends are 585 

likely dominated by just sampling of low frequency natural variability such as the Pacific 586 
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Decadal Oscillation (PDO) and have little resemblance to the SST warming patterns anticipated 587 

over longer timescales from anthropogenic climate forcing. 588 

Ideally we would like to show that the statistical properties of the HRCM simulation (such 589 

as long-term mean rainfall rates) have converged at the grid resolution employed. As for most 590 

comprehensive climate simulations we do not have the luxury of demonstrating numerical 591 

convergence of our solutions or of being able to confidently say how much any remaining 592 

deficiencies in the simulations can be ascribed to the finite grid resolution of the model.  593 

However on the Big Island the relatively smooth geographical patterns in both observed and 594 

modeled mean rainfall suggest that the 3 km horizontal grid spacing in our intermediate domain 595 

may be adequate. However the topography on each of Maui, Oahu and Kauai is overall steeper 596 

than on the Big Island and aspects of the topography seem not adequately resolved even in 3 km 597 

grids. As part of this study we included an innermost domain with 1 km horizontal resolution 598 

over the island of Maui. The results in the 1-km simulation showed substantial improvement of 599 

the simulated mean rainfall climatology. This improvement can be plausibly explained by the 600 

better resolution of the topography on the 1-km grids. Our planned future work includes 601 

exploring simulations with enhanced resolution model grids over Oahu and Kauai. 602 

Despite some remaining biases, the overall success of the HRCM in reproducing Hawaiian 603 

microclimate over the 20-year historical period considered here gives us confidence that the 604 

model is suitable for application to fine spatial resolution climate change projections for the 605 

Hawaiian Islands. Part II of this work will present the results from HRCM simulations designed 606 

as a projection for global climate conditions of the late 21st century. Results of the simulations 607 

reported in this two-part paper will be publically available at the Asia-Pacific Data-Research 608 

Center of the University of Hawaii at Manoa (http://apdrc.soest.hawaii.edu/). 609 
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Appendix 618 

Low Frequency SST Variability 619 

The observed and modeled rainfall time series shown in Figs. 6 and 8 reveal significant 620 

variability from year-to-year as well as at decadal and possibly even longer time scales.  621 

Measures of observed state-wide rainfall show correlations with the phase of the Pacific 622 

Decadal Oscillation (PDO; e.g. Chu and Chen, 2005) and it is reasonable to suppose that the 623 

changes in Hawaii rainfall on long time scales are largely driven by the regional-to-basin scale 624 

SST variations associated with the PDO. There may also be a consistent warming trend in the 625 

SST variations that represent the effects of anthropogenically forced global warming. The actual 626 

trend in the SST (Fig. A1) over our period of interest has little resemblance to the SST warming 627 

pattern anticipated over longer timescales from anthropogenic climate forcing, and is probably 628 

best regarded as resulting primarily from the 20-year sample of low frequency natural variability 629 

such as the PDO.   630 



29 
 

References 631 

Adler, R. F., and Coauthors 2003: The Version 2 Global Precipitation Climatology Project 632 

(GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4, 1147-1167. 633 

Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of 634 

regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 635 

1666–1685, doi: 10.1175/2008MWR2620.1. 636 

Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging 637 

techniques using two-way nesting in the WRF model for regional climate modeling. J. 638 

Climate, 25, 2805–2823, doi: 10.1175/JCLI-D-11-00167.1. 639 

Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in 640 

the Hawaiian trade wind regime. J. Climate, 20, 1145–1160, doi: 10.1175/JCLI4033.1. 641 

Castro, C. L., R. A. Pielke Sr., and G. Leoncini, 2005: Dynamical downscaling: Assessment of 642 

value retained and added using the Regional Atmospheric Modeling System (RAMS). J. 643 

Geophys. Res., 110, D05108, doi: 10.1029/2004JD004721. 644 

Chen, Y.-L., and A. J. Nash, 1994; Diurnal variations of surface airflow and rainfall frequencies 645 

on the island of Hawaii, Mon. Weather Rev., 122, 34–56. 646 

Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian 647 

Islands. J. Climate, 18, 4796–4813, doi: 10.1175/JCLI3578.1. 648 

Chu, P.-S., and J. D. Clark, 1999: Decadal variations of tropical cyclone activity over the 649 

Central North Pacific. Bull. Amer. Meteor. Soc., 80, 1875–1881. 650 

Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374. 651 

Cretat, J. C., M. B. Pohl, and Y. Richard, 2011: Quantifying internal variability in a regional 652 

climate model: a case study for Southern Africa. Clim. Dyn., 37, 1335-1356, doi: 653 

10.1007/s00382-011-1021-5. 654 

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance 655 

of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 656 

10.1002/qj.828. 657 

Frazier, A. G., Giambelluca, T. W., Diaz, H. F. and Needham, H. L., 2015: Comparison of 658 

geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. 659 

Int. J. Climatol, doi: 10.1002/joc.4437. 660 

Fu, C., and Coauthors, 2005: Regional climate model intercomparison project for Asia. Bull. 661 

Amer. Meteor. Soc., 86, 257–266, doi: 10.1175/BAMS-86-2-257. 662 

Giambelluca, T.W., Q. Chen, A.G. Frazier, J.P. Price, Y.-L. Chen, P.-S. Chu, J.K. Eischeid, and 663 



30 
 

D.M. Delparte, 2013: Online Rainfall Atlas of Hawai‘i. Bull. Amer. Meteor. Soc. 94, 313-316, 664 

doi: 10.1175/BAMS-D-11-00228.1. 665 

Giambelluca, T. W., and Coauthors, 2014: Evapotranspiration of Hawai‘i. Final report 666 

submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on 667 

Water Resource Management, State of Hawai‘i. 668 

Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric 669 

boundary layer depth using COSMIC radio occultation data, J. Atmos. Sci., 68, 1703–1713, 670 

doi: 10.1175/2011JAS3612.1. 671 

Harter, D. E. V., S. D. H. Irl, B. Seo, M. J. Steinbauer, R. Gillespie, K. A. Triantis, J.-M. 672 

Fernández-Palacios, and C. Beierkuhnlein, 2015: Impacts of global climate change on the 673 

floras of oceanic islands – Projections, implications and current knowledge. Perspect. Plant 674 

Ecol. Evol. Syst., 17, 160-183, doi: 10.1016/j.ppees.2015.01.003. 675 

Hartley, T. M., and Y.-L. Chen, 2010: Characteristics of summer trade wind rainfall over Oahu. 676 

Wea. Forecasting, 25, 1797–1815, doi: 10.1175/2010WAF2222328.1. 677 

Hostetler, S. W., J. R. Alder, and A. M. Allan, 2011: Dynamically downscaled climate 678 

simulations over North America: Methods, evaluation and supporting documentation for 679 

users: U.S. Geological Survey Open-File Report 2011-1238, 64 pp. 680 

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, 681 

and D. B. Wolff, 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, 682 

multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 33-55, 683 

doi: 10.1175/JHM560.1. 684 

Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: 685 

Heavier summer downpours with climate change revealed by weather forecast resolution 686 

model.  Nature Clim. Change, doi: 10.1038/NCLIMATE2258.  687 

Laprise, R., D. Caya, M. Giguère, G. Bergeron, H. Côté, J.-P. Blanchet, G. J. Boer, and N. A. 688 

McFarlane, 1998: Climate and climate change in western Canada as simulated by the 689 

Canadian Regional Climate Model. Atmos.–Ocean, 36, 119–167. 690 

Leong, J.-A., and Coauthors, 2014: Ch. 23: Hawai‘i and U.S. affiliated Pacific islands. Climate 691 

Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, 692 

Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 693 

537-556, doi: 10.7930/J0W66HPM. 694 

Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical 695 

downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. 696 



31 
 

Res., 113, D09112, doi: 10.1029/2007JD009216. 697 

Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. 698 

Meteor., 21, 1713–1729. 699 

Mahoney, K., M. Alexander, J. D. Scott, and J. Barsugli, 2013: High-resolution downscaled 700 

simulations of warm-season extreme precipitation events in the Colorado Front Range under 701 

past and future climates. J. Climate, 26, 8671–8689, doi: 10.1175/JCLI-D-12-00744.1. 702 

Mearns, L. O, and Coauthors, 2012: The North American Regional Climate Change Assessment 703 

Program: Overview of Phase I results. Bull. Amer. Meteor. Soc., 93, 1337–1362, doi: 704 

10.1175/BAMS-D-11-00223.1. 705 

Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the 706 

effects of domain position and geometry in regional climate model simulations. J. Geophys. 707 

Res., 109, D13104, doi: 10.1029/2003JD004495. 708 

Morel, B., B. Pohl, Y. Richard, B. Bois, and M. Bessafi, 2014: Regionalizing rainfall at very 709 

high resolution over La Réunion Island using a regional climate model. Mon. Wea. Rev., 142, 710 

2665–2686, doi: 10.1175/MWR-D-14-00009.1. 711 

Pérez, J.C., J. P. Díaz, A. González, J. Expósito, F. Rivera-López, and D. Taima, 2014: 712 

Evaluation of WRF parameterizations for dynamical downscaling in the Canary Islands. J. 713 

Climate, 27, 5611–5631, doi: 10.1175/JCLI-D-13-00458.1. 714 

Prein, A.F., and Coauthors, 2015: A review on regional convection-permitting climate 715 

modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, doi: 716 

10.1002/2014RG000475. 717 

Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the 718 

Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 719 

15, 1091–1116, doi: 10.1175/JHM-D-13-0118.1. 720 

Reynolds, R. W., C. L. Gentemann and G. K. Corlett, 2010: Evaluation of AATSR and TMI 721 

Satellite SST data. J. Climate, 23, 152-165, doi: 10.1175/2009JCLI3252.1. 722 

Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis 723 

for Research and Applications. J. Climate, 24, 3624–3648, doi: 10.1175/JCLI-D-11-00015.1. 724 

Rummukainen, M., 2010: State-of-the-art with regional climate models. WIREs Clim. Change, 1, 725 

82–96, doi: 10.1002/wcc.8.  726 

Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds: Weather and Climate in 727 

Hawai’i, M. Sanderson, Ed., University of Hawai’i Press, 12–36. 728 

——, B. Kilonsky, and B. Meisner, 1977: Diurnal variation in rainfall and cloudiness. Water 729 



32 
 

Resources Research Center Tech Rep. 112, 67 pp. 730 

Sen Roy, S., and R. C. Balling, 2004: Analysis of Hawaiian diurnal rainfall patterns. Theor. 731 

Appl. Climatol., 79, 209-214. 732 

Skamarock, W.C., and Coauthors, 2008: A description of the Advanced Research WRF version 733 

3. NCAR Tech. Note NCAR/TN-4751STR, 113pp, doi: 10.5065/D68S4MVH. 734 

Sokolovskiy, S., Y.-H. Kuo, C. Rocken, W. S. Schreiner, D. Hunt, and R. A. Anthes, 2006: 735 

Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the 736 

open-loop mode, Geophys. Res. Lett., 33, L12813, doi:10.1029/2006GL025955. 737 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment 738 

design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1. 739 

Wang, Y., L.R. Leung, J. L. McGregor, D.-K. Lee, W.-C. Wang, Y.-H. Ding, and F. Kimura, 740 

2004: Regional climate modeling: Progress, challenges and prospects. J. Meteor. Soc. 741 

Japan, 82, 1599-1628. 742 

Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2012: Advances and 743 

limitations of atmospheric boundary layer observations with GPS occultation over southeast 744 

Pacific Ocean, Atmos. Chem. Phys., 12, 903-918, doi: 10.5194/acp-12-903-2012. 745 

Zhang, C. X., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer 746 

clouds over the Southeast Pacific in WRF-ARW using a modified Tiedtke cumulus 747 

parameterization scheme. Mon. Wea. Rev., 139, 3489–3513, doi: 10.1175/MWR-D-10-748 

05091.1. 749 

Zhang, C. X., Y. Wang, A. Lauer, and K. Hamilton, 2012a: Configuration and evaluation of the 750 

WRF model for the study of Hawaiian regional climate. Mon. Wea. Rev., 140, 3259–3277. 751 

doi: 10.1175/MWR-D-11-00260.1. 752 

——, Y. Wang, A. Lauer, K. Hamilton, and F. Xie, 2012b: Cloud base and top heights in the 753 

Hawaiian region determined with satellite and ground-based measurements, Geophys. Res. 754 

Lett., 39, L15706, doi:10.1029/2012GL052355. 755 

  756 



33 
 

Figure captions 757 

Figure 1. (a) Model domains and synoptic patterns most relevant to weather and climate in the 758 

Hawaiian Islands. (b) The terrain heights and the locations of the METAR stations employed 759 

here.  (c) Domain 3 (1 km horizontal resolution). 760 

Figure 2. The 20-year mean winter precipitation in (a) the GPCP gridded observations, and (b) 761 

HRCM 15 km simulation. (c) as in (a) but for summer. (d) as in (b) but for summer. (e) The 762 

time series for the simulated monthly mean rainfall averaged over the whole domain in the 763 

model simulation (dashed blue), the GPCP observations (red) and the TRMM observations 764 

(black). SC means spatial correlation coefficient. 765 

Figure 3. The 20-year mean geopotential height at 500 hPa (GHT500) (shaded, m) and mean sea 766 

level pressure (SLP) (contour, hPa) biases (HRCM simulation minus MERRA reanalysis data) 767 

for (a) winter, and (b) summer. 768 

Figure 4. PDFs of the daily values over the time period 1990-2009 of (left to right): daily mean 769 

surface air temperature (SAT), daily maximum SAT, daily minimum SAT, daily mean 770 

surface specific humidity (Q2), daily mean surface wind speed at (top to bottom) Lihue, 771 

Honolulu, Kahului and Hilo. Red lines show station observations and blue lines are for the 772 

HRCM 3 km simulation at nearest land grid points to stations. The simulated long-term mean 773 

biases (HRCM simulation minus observations) for each variable are also shown in the figure. 774 

The rightmost column is the daily rainfall histogram for each station with colored shading 775 

showing the observed values and the hatching showing the result for the HRCM 3 km 776 

simulation. The bin width for SAT is 1°C, for surface specific humidity is 1 g kg-1, for wind 777 

speed is 1 m s-1, and uneven for rainfall as shown by the tick marks.   778 

Figure 5. The 20-year mean seasonal cycle for surface air temperature (SAT), wind speed and 779 

rainfall at Lihue, Honolulu, Kahului and Hilo, respectively. The red line is for station 780 

observations, and the blue line is for the HRCM 3 km simulation at the nearest land grid 781 

points.  The correlation coefficient between the two curves, C, is shown at upper right corner 782 

of each panel. 783 

Figure 6. The time series of mean surface air temperature (SAT), wind speed and rainfall at 784 

Lihue, Honolulu, Kahului and Hilo. Quantities shown are 6-month running-means. Red 785 

curves are for the station observations, and blue is for the HRCM 3 km simulation at the land 786 

grid point nearest to the station. ‘RMS’ is the mean root mean square difference between 787 

model and observational curves, and ‘C’ is the correlation coefficient between the two curves. 788 

The least squares linear regression trends over the 20 years are also shown in each panel.   789 

Figure 7. (a) The observed 20-year annual mean rainfall based on several hundred measurement 790 

stations (see text for details). (b) The simulated annual mean rainfall from the 3 km HRCM 791 
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simulation. ‘SC’ is the spatial correlation over the land calculated for 3 km grids. Also shown 792 

are the averaged rainfall amounts (mm d-1) over all land areas.  (c) The model bias (model 793 

minus observations). The observations, model results and the model biases for winter and 794 

summer are shown in (d-f) and (g-i), respectively. 795 

Figure 8. The interannual variations of the rainfall (red is for observations; blue is for the 796 

HRCM 3 km simulation) and local SST (black) for the Islands of Kauai, Oahu, Maui and 797 

Hawaii. C1 denotes the correlation coefficient between local SST and observed rainfall. C2 798 

denotes the correlation coefficient between observed and simulated rainfall. The trends are 799 

also shown in the figure. 800 

Figure 9. Phase of the diurnal harmonic of long-term mean annual-mean rainfall. Specifically 801 

shown are the local time (LT) peak of the diurnal (24-hour) harmonic of the mean rainfall 802 

rate (a, b) and rainfall frequency (c, d). Results for our gridded observations over land are in 803 

(a, c) and those for the HRCM simulation are in (b, d).  804 

Figure 10. The trade wind inversion base height (TWIBH) derived from the COSMIC 805 

observations (a) and the HRCM simulation (b). The black dots in (a) are the locations of the 806 

observed profiles from COSMIC. The time-series of monthly mean of the TWIBH computed 807 

from balloon soundings at Lihue and Hilo are shown by the red curves in (c) and (d), 808 

respectively. The values from the HRCM simulation are shown by the blue curves. The 809 

correlation coefficient between the observed and modeled time series is shown in the upper 810 

right corner of each panel.  811 

Figure 11. The distribution map for the 20-year mean surface air temperature (SAT) bias 812 

(HRCM simulations minus observations) over the Hawaiian Islands (a). The temperature 813 

biases (e.g., “1:2” means “1 to 2”) for each station related to liquid water path (LWP) and 814 

topography are also shown (b). Some station names are marked in the figures. K is degrees in 815 

Kelvin. Box 1 includes the low topography stations, and Box 2 includes the stations that are 816 

in the cloud zone in the model. 817 

Figure 12. The retrieved net radiation at the surface (a) and total cloud fraction (c) climatology 818 

by Giambelluca et al. (2014), and the model simulated climatology of net surface radiation 819 

(b) and total cloud fraction (d). 820 

Figure 13.  The 20-year mean rainfall in observations (a), the HRCM 1 km simulation (b) and 821 

the HRCM 3 km simulation (c). The numbers in (a) are the NCEI observational stations 822 

listed in Table 2. 823 

Figure A1. The trend in the Reynolds (2010) observed sea surface temperatures (SSTs) over the 824 

time period 1990-2009 based on a linear regression of the monthly mean values at each grid 825 

point. The trend is expressed in Kelvin (K) over 20 years.  826 
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Table 1. Long-term mean surface air temperature (SAT) from the METAR (in bold) and other 827 

surface temperature stations (some of the stations are shown in Fig.11).  Also shown is the 828 

difference, ΔSAT, with the model simulation using values interpolated horizontally to the 829 
station location. ΔElev is the elevation difference between the model-interpolated 830 
topography and the actual station elevation. “SAT Adj” is the air temperature adjustment 831 
applied to the model result to account for this elevation bias. The last column shows the 832 
ΔSAT after the elevation-related adjustment.  833 

Station Name Lat 

(N) 

Lon 

(E) 

Elev 

(m) 

ΔElev 

(m) 

SAT 

(°C) 

ΔSAT 

(°C) 

SAT Adj 

(°C) 

ΔSAT After 

Adj. (°C) 
Camp Erdman 21.6 -158.2 2.1 182.9 24.1 -1.9 1.2 -0.8 

Glenwood Number 2 19.5 -155.1 670.6 -75.9 19.5 -1.1 -0.5 -1.6 

Haleakala Ranger Station 338 20.8 -156.2 2121.4 168.7 12.5 -3.3 1.1 -2.2 

Hana Airport 20.8 -156.0 22.9 55.6 23.3 -0.3 0.4 0.0 

Hawaii Vol National Park HQ 54 19.4 -155.2 1210.4 -72.5 16.5 -1.6 -0.5 -2.0 

Hilo International Airport 19.7 -155.1 11.6 -2.5 23.4 0.7 -0.0 0.7 

Honolulu Observatory 21.3 -158.0 0.9 0.0 24.5 -0.2 0.0 -0.2 

Honolulu International Airport 21.3 -157.9 2.5 3.0 25.5 -0.7 0.0 -0.7 

Kahoolawe 20.5 -156.6 365.8 -104.3 21.9 0.2 -0.7 -0.5 

Kahului Airport 20.9 -156.4 15.5 23.1 24.4 -0.6 0.2 -0.4 

Kailua 446 20.9 -156.2 213.4 7.7 20.0 1.2 0.1 1.3 

Kainaliu 19.5 -155.9 457.2 37.9 20.8 -0.1 0.2 0.2 

Kanalohuluhulu 22.1 -159.6 1097.3 -111.0 15.0 1.4 -0.7 0.6 

Kaneohe 21.4 -157.8 14.6 34.4 25.1 -1.2 0.2 -1.0 

Kapalua West Maui Airport 21.0 -156.7 73.2 62.2 24.2 -0.9 0.4 -0.5 

KE Ahole Point 19.7 -156.1 6.1 11.5 24.9 -0.3 0.1 -0.2 

Kihalani 20.0 -155.2 301.8 -42.6 21.7 -0.3 -0.3 -0.6 

Kii Kahuku 911 21.7 -157.9 7.6 4.6 24.2 -0.3 0.0 -0.3 

Kula Branch Station 20.8 -156.3 944.9 72.1 17.8 -0.4 0.5 0.1 

Kula Hospital 267 20.7 -156.4 923.5 207.4 17.4 -1.2 1.3 0.2 

Kulani Camp 79 19.5 -155.3 1575.8 -32.8 12.8 -0.4 -0.2 -0.6 

Lanai Airport 20.8 -156.9 396.2 -42.3 21.9 -0.7 -0.3 -1.0 

Lihue Airport 22.0 -159.3 54.0 -19.1 24.3 -0.7 -0.1 -0.8 

Makaha Country Club 21.5 -158.2 76.2 158.6 24.1 -1.8 1.0 -0.7 

Makena Golf Course 20.6 -156.4 26.8 83.8 24.0 -0.4 0.5 0.2 

Makaweli 21.9 -159.6 42.7 -9.8 24.5 -1.2 -0.1 -1.2 

Manoa LYON ARBO 21.3 -157.8 152.4 106.4 22.7 -0.7 0.7 -0.0 

Mauna Loa Slope OBS 39 19.5 -155.6 3398.5 96.4 8.0 -1.8 0.6 -1.2 

Molokai Airport 21.1 -157.1 135.0 9.0 23.7 -0.9 0.1 -0.8 

Naalehu 19.0 -155.6 245.7 -77.8 22.7 -0.1 -0.5 -0.6 

OHE’O 20.6 -156.0 28.0 2.4 24.0 -0.1 0.0 -0.1 

Opihihale 19.3 -155.9 414.5 70.9 20.9 0.2 0.5 0.7 

Princeville Ranch 22.2 -159.5 66.1 -33.2 23.5 -0.1 -0.2 -0.4 

Puukolii 20.9 -156.7 128.0 37.2 24.0 -0.5 0.2 -0.3 

Puukohola Heiau 20.0 -155.8 40.5 39.0 23.4 1.2 0.3 1.4 

Puu Manawahua 21.4 -158.1 509.9 -288.8 21.2 1.1 -1.9 -0.7 

Sea Mountain 19.1 -155.5 24.4 -6.2 23.6 0.4 -0.0 0.4 

South Kona 2 19.1 -155.8 719.3 1.1 19.6 -0.2 0.0 -0.2 

Upper Wahiawa 21.5 -158.0 306.9 -52.0 22.1 -0.3 -0.3 -0.7 

Waikiki 21.3 -157.8 3.0 18.5 25.1 -0.7 0.1 -0.6 

Waimanalo Experimental Farm 21.3 -157.7 19.5 43.1 24.2 -0.7 0.3 -0.5 

Waimea Arboretum 892 21.6 -158.1 12.5 121.8 23.7 -1.1 0.8 -0.3 

Waimea 947 22.0 -159.7 6.1 20.3 23.9 -0.0 0.1 0.1 

Mauna Kea Summit 19.8 -155.5 4205.0 -350.0 2.2 1.7 -2.3 -0.5 
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Table 2. The NCEI rainfall stations (location of each station is shown in Fig.13a) over the Island 834 

of Maui with the observed and HRCM-simulated long-term mean rainfall rates. 835 

Station Latitude 

(N) 

Longitude 

(E) 

Elevation 

(m) 

OBS 

(mm/day) 

3 km simulation 1 km simulation 

Mean 

(mm/ 

day) 

Bias 

(mm/

day) 

Bias 

(%) 

Mean 

(mm/ 

day) 

Bias 

(mm/

day) 

Bias 

(%) 

 1 20.75 -156.23 2122  3.2 14.9  11.8  369 4.2 1.1 33 

 2 20.85 -156.33  329  3.0  2.0 -1.0  -34 2.7 -0.3 -10 

 3 20.92 -156.33   98  3.0  2.1 -0.9  -29 3.1 0.1 2 

 4 20.98 -156.65   67  2.4  1.6 -0.8  -34 2.8 0.4 17 

 5 20.88 -156.42   16  1.1  0.9 -0.2  -18 1.1 -0.0 -4 

 6 20.88 -156.20  213  8.3  5.8 -2.5  -30 7.6 -0.7 -8 

 7 21.18 -156.97    9  2.9  2.0 -0.9  -32 2.1 -0.8 -26 

 8 20.95 -156.67   73  1.9  1.1 -0.8  -41 1.8 -0.1 -6 

 9 20.75 -156.32  945  1.5  2.2 0.7   43 1.6 0.1 4 

10 20.70 -156.35  924  2.0  3.2 1.2   58 1.6 -0.4 -18 

11 21.02 -156.60  107  2.6  1.8 -0.8  -32 2.1 -0.5 -21 

12 20.69 -156.03   28  5.7  5.2 -0.5  -9 6.4  0.6  11 

13 20.78 -156.27 1256  3.7  6.3  2.6   69 2.9 -0.9 -23 

14 20.80 -156.12  383 13.6  8.0 -5.6  -41 14.1 0.6 4 

15 20.90 -156.37   52  2.0  1.3 -0.6  -32 1.9 -0.1 -5 

16 20.92 -156.67  128  1.7  1.1 -0.6  -36 1.3 -0.4 -25 

17 20.88 -156.40   27  1.5  1.0 -0.5  -32 1.3 -0.2 -14 

18 20.63 -156.38  579  2.1  1.3 -0.8  -38 1.6 -0.4 -20 

19 20.90 -156.50   98  2.2  1.1 -1.1  -51 1.3 -1.0 -43 

20 20.93 -156.52  104  2.9  1.6 -1.4  -47 1.8 -1.1 -38 
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 836 

Figure 1. (a) Model domains and synoptic patterns most relevant to weather and climate in the 837 

Hawaiian Islands. (b) The terrain heights and the locations of the METAR stations employed 838 

here. (c) Domain 3 (1 km horizontal resolution). 839 
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 840 

Figure 2. The 20-year mean winter precipitation in (a) the GPCP gridded observations, and (b) 841 

HRCM 15 km simulation. (c) as in (a) but for summer. (d) as in (b) but for summer. (e) The 842 

time series for the simulated monthly mean rainfall averaged over the whole domain in the 843 

model simulation (dashed blue), the GPCP observations (red) and the TRMM observations 844 

(black). SC means spatial correlation coefficient. 845 
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 846 

Figure 3. The 20-year mean geopotential height at 500 hPa (GHT500) (shaded, m) and mean sea 847 

level pressure (SLP) (contour, hPa) biases (HRCM simulation minus MERRA reanalysis data) 848 

for (a) winter, and (b) summer. 849 
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 850 
Figure 4. PDFs of the daily values over the time period 1990-2009 of (left to right): daily mean 851 

surface air temperature (SAT), daily maximum SAT, daily minimum SAT, daily mean 852 

surface specific humidity (Q2), daily mean surface wind speed at (top to bottom) Lihue, 853 

Honolulu, Kahului and Hilo. Red lines show station observations and blue lines are for the 854 

HRCM 3 km simulation at nearest land grid points to stations. The simulated long-term mean 855 

biases (HRCM simulation minus observations) for each variable are also shown in the figure. 856 

The rightmost column is the daily rainfall histogram for each station with colored shading 857 

showing the observed values and the hatching showing the result for the HRCM 3 km 858 

simulation. The bin width for SAT is 1°C, for surface specific humidity is 1 g kg-1, for wind 859 

speed is 1 m s-1, and uneven for rainfall as shown by the tick marks.  860 
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 861 
Figure 5. The 20-year mean seasonal cycle for surface air temperature (SAT), wind speed and 862 

rainfall at Lihue, Honolulu, Kahului and Hilo, respectively. The red line is for station 863 

observations, and the blue line is for the HRCM 3 km simulation at the nearest land grid 864 

points.  The correlation coefficient between the two curves, C, is shown at upper right corner 865 

of each panel.  866 
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 867 
Figure 6. The time series of mean surface air temperature (SAT), wind speed and rainfall at 868 

Lihue, Honolulu, Kahului and Hilo. Quantities shown are 6-month running-means. Red 869 

curves are for the station observations, and blue is for the HRCM 3 km simulation at the land 870 

grid point nearest to the station. ‘RMS’ is the mean root mean square difference between 871 

model and observational curves, and ‘C’ is the correlation coefficient between the two curves. 872 

The least squares linear regression trends over the 20 years are also shown in each panel.   873 
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 874 
Figure 7. (a) The observed 20-year annual mean rainfall based on several hundred measurement 875 

stations (see text for details). (b) The simulated annual mean rainfall from the 3 km HRCM 876 

simulation. ‘SC’ is the spatial correlation over the land calculated for 3 km grids. Also shown 877 

are the averaged rainfall amounts (mm d-1) over all land areas.  (c) The model bias (model 878 

minus observations). The observations, model results and the model biases for winter and 879 

summer are shown in (d-f) and (g-i), respectively. 880 
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 881 

Figure 8. The interannual variations of the rainfall (red is for observations; blue is for the 882 

HRCM 3 km simulation) and local SST (black) for the Islands of Kauai, Oahu, Maui and 883 
Hawaii. C1 denotes the correlation coefficient between local SST and observed rainfall. C2 884 

denotes the correlation coefficient between observed and simulated rainfall. The trends are 885 
also shown in the figure. 886 
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 887 

Figure 9. Phase of the diurnal harmonic of long-term mean annual-mean rainfall. Specifically 888 

shown are the local time (LT) peak of the diurnal (24-hour) harmonic of the mean rainfall 889 

rate (a, b) and rainfall frequency (c, d). Results for our gridded observations over land are in 890 

(a, c) and those for the HRCM simulation are in (b, d).  891 
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 892 

Figure 10. The trade wind inversion base height (TWIBH) derived from the COSMIC 893 

observations (a) and the HRCM simulation (b). The black dots in (a) are the locations of the 894 

observed profiles from COSMIC. The time-series of monthly mean of the TWIBH computed 895 

from balloon soundings at Lihue and Hilo are shown by the red curves in (c) and (d), 896 

respectively. The values from the HRCM simulation are shown by the blue curves. The 897 

correlation coefficient between the observed and modeled time series is shown in the upper 898 

right corner of each panel.  899 
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 900 

Figure 11. The distribution map for the 20-year mean surface air temperature (SAT) bias 901 

(HRCM simulations minus observations) over the Hawaiian Islands (a). The temperature 902 

biases (e.g., “1:2” means “1 to 2”) for each station related to liquid water path (LWP) and 903 

topography are also shown (b). Some station names are marked in the figures. K is degrees in 904 

Kelvin. Box 1 includes the low topography stations, and Box 2 includes the stations that are 905 

in the cloud zone in the model. 906 
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 907 

Figure 12. The retrieved net radiation at the surface (a) and total cloud fraction (c) climatology 908 

by Giambelluca et al. (2014), and the model simulated climatology of net surface radiation 909 

(b) and total cloud fraction (d).  910 
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 911 

Figure 13.  The 20-year mean rainfall from observations (a), the HRCM 1 km simulation (b) and 912 

the HRCM 3 km simulation (c). The numbers in (a) are the NCEI observational stations 913 

listed in Table 2.  914 

  915 

  916 
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        917 

Figure A1. The trend in the Reynolds (2010) observed sea surface temperatures (SSTs) over the 918 

time period 1990-2009 based on a linear regression of the monthly mean values at each grid 919 

point. The trend is expressed in Kelvin (K) over 20 years. 920 


